login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A242562
Primes p such that 1000p+1, 1000p+3, 1000p+7 and 1000p+9 are prime.
2
13, 1447, 5527, 28201, 36217, 75079, 81157, 95911, 187423, 188677, 202327, 210643, 248077, 263323, 282589, 283267, 423043, 466897, 472597, 478189, 478603, 631273, 640261, 695749, 730111, 736279, 806929, 808021, 917641, 964303, 1018177, 1026547, 1064263, 1108489, 1150861
OFFSET
1,1
EXAMPLE
130001, 130003, 130007 and 130009 are all prime. Thus 13 is a member of this sequence.
PROG
(Python)
import sympy
from sympy import isprime
from sympy import prime
{print(prime(n)) for n in range(1, 10**5) if isprime(1000*prime(n)+1) and isprime(1000*prime(n)+3) and isprime(1000*prime(n)+7) and isprime(1000*prime(n)+9)}
(PARI) for(n=1, 10^5, s=prime(n); if(ispseudoprime(1000*s+1) && ispseudoprime(1000*s+3) && ispseudoprime(1000*s+7) && ispseudoprime(1000*s+9), print(s)));
CROSSREFS
Sequence in context: A197097 A353030 A064962 * A201357 A220551 A185073
KEYWORD
nonn
AUTHOR
Derek Orr, May 17 2014
STATUS
approved