login
A201357
Numbers k such that (2^k + k + 1)*2^k - 1 is prime.
7
1, 13, 1468, 2701, 2959, 3735, 8686, 11920, 89757
OFFSET
1,2
EXAMPLE
13 is in the sequence because (2^13 + 13 + 1)*2^13 - 1 = 67223551 is prime.
MATHEMATICA
lst={}; Do[If[PrimeQ[(2^n + n+1)*2^n-1], AppendTo[lst, n]], {n, 10000}]; lst
PROG
(PARI) is(n)=isprime((2^n+n+1)<<n-1) \\ Charles R Greathouse IV, Feb 17 2017
(Python)
from sympy import isprime
def afind(limit, startk=1):
pow2 = 2**startk
for k in range(startk, limit+1):
if isprime((pow2 + k + 1)*pow2 - 1):
print(k, end=", ")
pow2 *= 2
afind(1500) # Michael S. Branicky, Jan 12 2022
KEYWORD
nonn,hard,more
AUTHOR
Michel Lagneau, Nov 30 2011
EXTENSIONS
a(8) from Michael S. Branicky, Jan 12 2022
a(9) from Michael S. Branicky, Aug 14 2024
STATUS
approved