login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A216265
Number of primes between n^3 - n and n^3.
3
0, 1, 0, 1, 0, 1, 1, 1, 1, 2, 2, 2, 0, 2, 3, 2, 2, 2, 2, 1, 2, 3, 4, 1, 3, 3, 2, 3, 3, 3, 2, 1, 3, 2, 4, 4, 3, 2, 1, 2, 7, 4, 2, 2, 4, 3, 4, 7, 3, 5, 7, 4, 6, 5, 4, 2, 8, 4, 3, 4, 2, 5, 7, 7, 4, 3, 8, 4, 1, 3, 2, 10, 4, 5, 4, 6, 7, 8, 6, 6, 1, 6, 8, 8, 7, 7, 6, 7, 4, 10
OFFSET
1,10
COMMENTS
Conjecture: a(n) > 0 for n > 13.
LINKS
FORMULA
a(n) = A000720(n^3) - A000720(n^3-n).
EXAMPLE
a(9) = 1 because between 9^3 - 9 and 9^3 there is just one prime (727).
a(10) = 2 because between 10^3 - 10 and 10^3 there are two primes (991 and 997).
a(11) = 2 because between 11^3 - 11 and 11^3 there are two primes (1321 and 1327).
MAPLE
a:= n-> add(`if`(isprime(t), 1, 0), t=n^3-n..n^3):
seq(a(n), n=1..100); # Alois P. Heinz, Mar 17 2013
MATHEMATICA
Table[PrimePi[n^3] - PrimePi[n^3 - n], {n, 100}] (* Alonso del Arte, Mar 17 2013 *)
PROG
(Java)
import java.math.BigInteger;
public class A216265 {
public static void main (String[] args) {
for (long n = 1; n < (1 << 21); n++) {
long cube = n*n*n, c = 0;
for (long k = cube - n; k < cube; ++k) {
BigInteger b1 = BigInteger.valueOf(k);
if (b1.isProbablePrime(2)) {
if (b1.isProbablePrime(80))
++c;
}
}
System.out.printf("%d, ", c);
}
}
} // Ratushnyak
(PARI)
default(primelimit, 10^7);
a(n) = primepi(n^3) - primepi(n^3-n);
/* Joerg Arndt, Mar 16 2013 */
CROSSREFS
Sequence in context: A223175 A322213 A118205 * A336694 A130277 A109135
KEYWORD
nonn
AUTHOR
Alex Ratushnyak, Mar 15 2013
STATUS
approved