login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A216268
Tetrahedral numbers of the form k^2 - 1.
2
0, 35, 120, 2024, 2600, 43680, 435730689800
OFFSET
1,2
COMMENTS
This sequence is finite by Siegel's theorem on integral points. The next term, if it exists, is greater than 10^35. - David Radcliffe, Jan 01 2024
MAPLE
select(t -> issqr(t+1), [seq(i*(i+1)*(i+2)/6, i=0..10^6)]); # Robert Israel, Jan 02 2024
MATHEMATICA
t = {}; Do[tet = n (n + 1) (n + 2)/6; If[IntegerQ[Sqrt[tet + 1]], AppendTo[t, tet]], {n, 0, 100000}]; t (* T. D. Noe, Mar 18 2013 *)
PROG
(Python)
import math
for i in range(1<<33):
t = i*(i+1)*(i+2)/6 + 1
sr = math.isqrt(t)
if sr*sr == t:
print (t-1, sep=' ')
(PARI)
A000292(n) = n*(n+1)*(n+2)\6;
for(n=0, 10^9, t=A000292(n); if (issquare(t+1), print1(t, ", ") ) );
/* Joerg Arndt, Mar 16 2013 */
CROSSREFS
Cf. A003556 (both square and tetrahedral).
Sequence in context: A337233 A230214 A284876 * A098218 A247679 A344013
KEYWORD
nonn,more,fini
AUTHOR
Alex Ratushnyak, Mar 15 2013
STATUS
approved