OFFSET
1,3
COMMENTS
A. J. J. Meyl proved in 1878 that only 1, 4 and 19600 are both square and tetrahedral. See link. [Bernard Schott, Dec 23 2012]
REFERENCES
D. Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, 600.
D. Wells, The Penguin Dictionary of Curious and Interesting Numbers, p. 165 (Rev. ed. 1997).
LINKS
M. Gardner, Letter to N. J. A. Sloane, circa Aug 11 1980, concerning A001110, A027568, A039596, etc.
A. J. J. Meyl, Question 1194, Nouvelles Annales de Mathématiques, 2ème série, tome 17 (1878), p. 464-467.
EXAMPLE
From Bernard Schott, Dec 23 2012: (Start)
If S(n) = n^2 and T(m) = m*(m+1)*(m+2)/6, then
-> S(1)= T(1) = 1;
-> S(2)= T(2) = 4;
-> S(140) = T(48) = 19600. (End)
MATHEMATICA
Select[Rest[FoldList[Plus, 0, Rest[FoldList[Plus, 0, Range[50000]]]]], IntegerQ[Sqrt[ # ]]&]
Intersection[Binomial[# + 2, 3]&/@Range[0, 10000], Range[0, 409000]^2] (* Harvey P. Dale, Feb 01 2011 *)
CROSSREFS
KEYWORD
nonn,fini,full
AUTHOR
STATUS
approved