login
A003556
Numbers that are both square and tetrahedral.
6
0, 1, 4, 19600
OFFSET
1,3
COMMENTS
A. J. J. Meyl proved in 1878 that only 1, 4 and 19600 are both square and tetrahedral. See link. [Bernard Schott, Dec 23 2012]
REFERENCES
D. Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, 600.
D. Wells, The Penguin Dictionary of Curious and Interesting Numbers, p. 165 (Rev. ed. 1997).
LINKS
A. J. J. Meyl, Question 1194, Nouvelles Annales de Mathématiques, 2ème série, tome 17 (1878), p. 464-467.
EXAMPLE
From Bernard Schott, Dec 23 2012: (Start)
If S(n) = n^2 and T(m) = m*(m+1)*(m+2)/6, then
-> S(1)= T(1) = 1;
-> S(2)= T(2) = 4;
-> S(140) = T(48) = 19600. (End)
MATHEMATICA
Select[Rest[FoldList[Plus, 0, Rest[FoldList[Plus, 0, Range[50000]]]]], IntegerQ[Sqrt[ # ]]&]
Intersection[Binomial[# + 2, 3]&/@Range[0, 10000], Range[0, 409000]^2] (* Harvey P. Dale, Feb 01 2011 *)
CROSSREFS
Intersection of A000290 and A000292.
Sequence in context: A258101 A265215 A070157 * A331667 A053015 A089210
KEYWORD
nonn,fini,full
STATUS
approved