OFFSET
1,1
COMMENTS
It is believed that for every repdigit r>1, inverse(cototient(r)) has a solution, usually more than one. For r=1, primes are the solutions.
LINKS
Donovan Johnson, Table of n, a(n) for n = 1..1000
EXAMPLE
n=1111 and cototient(1111)=111. By accident, both n and its cototient are decimal repunits.
MATHEMATICA
ta={{0}}; Do[s=Length[u=Union[IntegerDigits[n-EulerPhi[n]]]]; If[Equal[s, 1]&&!PrimeQ[n]&&Equal[u, {1}], Print[{n, n-EulerPhi[n]}]; ta=Append[ta, n]], {n, 1, 100000}]; ta=Delete[ta, 1]; ta-EulerPhi[ta]
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Labos Elemer, Oct 22 2004
STATUS
approved