login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A225930
Number of conjugacy classes in twisted Chevalley group 3D4(q) as q runs through the prime powers.
1
35, 126, 345, 786, 2806, 4685, 7386, 16110, 30946, 69909, 88746, 137566, 292566, 406906, 551886, 732546, 954310, 1082405, 1926226, 2896410, 3500206, 4985766, 5884906, 8042226, 12326286, 14076610, 17043525, 20456446, 25774710, 28792666, 39449446, 43584810, 48037086
OFFSET
1,1
LINKS
Paolo Xausa, Table of n, a(n) for n = 1..10000 (terms 1..1000 from Eric M. Schmidt)
FORMULA
Let q be the n-th prime power. Then, a(n) = q^4 + q^3 + q^2 + q + c, where c = 5 if q is even and c = 6 if q is odd.
MATHEMATICA
Map[(#^2 + 1)*(# + 1)*# + 5 + Mod[#, 2] &, Select[Range[100], PrimePowerQ]] (* Paolo Xausa, Jan 16 2025 *)
PROG
(PARI) apply(x->(x^4 + x^3 + x^2 + x + 5 + (x%2)), select(isprimepower, [1..100])) \\ Michel Marcus, Jan 16 2025
CROSSREFS
Cf. A000961 (without 1), A188161, A224790, A225928-A225938.
Sequence in context: A098218 A247679 A344013 * A209370 A219717 A220481
KEYWORD
nonn,changed
AUTHOR
Eric M. Schmidt, May 21 2013
STATUS
approved