|
|
A225930
|
|
Number of conjugacy classes in twisted Chevalley group 3D4(q) as q runs through the prime powers.
|
|
1
|
|
|
35, 126, 345, 786, 2806, 4685, 7386, 16110, 30946, 69909, 88746, 137566, 292566, 406906, 551886, 732546, 954310, 1082405, 1926226, 2896410, 3500206, 4985766, 5884906, 8042226, 12326286, 14076610, 17043525, 20456446, 25774710, 28792666, 39449446, 43584810
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
LINKS
|
Eric M. Schmidt, Table of n, a(n) for n = 1..1000
Frank Luebeck, Numbers of Conjugacy Classes in Finite Groups of Lie Type.
|
|
FORMULA
|
Let q be the n-th prime power. Then, a(n) = q^4 + q^3 + q^2 + q + c, where c = 5 if q is even and c = 6 if q is odd.
|
|
PROG
|
def A225930(q) : return q^4 + q^3 + q^2 + q + [5, 6][q%2]
|
|
CROSSREFS
|
Cf. A188161, A224790, A225928 - A225938.
Sequence in context: A098218 A247679 A344013 * A209370 A219717 A220481
Adjacent sequences: A225927 A225928 A225929 * A225931 A225932 A225933
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Eric M. Schmidt, May 21 2013
|
|
STATUS
|
approved
|
|
|
|