login
A225930
Number of conjugacy classes in twisted Chevalley group 3D4(q) as q runs through the prime powers.
1
35, 126, 345, 786, 2806, 4685, 7386, 16110, 30946, 69909, 88746, 137566, 292566, 406906, 551886, 732546, 954310, 1082405, 1926226, 2896410, 3500206, 4985766, 5884906, 8042226, 12326286, 14076610, 17043525, 20456446, 25774710, 28792666, 39449446, 43584810, 48037086
OFFSET
1,1
LINKS
Paolo Xausa, Table of n, a(n) for n = 1..10000 (terms 1..1000 from Eric M. Schmidt)
FORMULA
Let q be the n-th prime power. Then, a(n) = q^4 + q^3 + q^2 + q + c, where c = 5 if q is even and c = 6 if q is odd.
MATHEMATICA
Map[(#^2 + 1)*(# + 1)*# + 5 + Mod[#, 2] &, Select[Range[100], PrimePowerQ]] (* Paolo Xausa, Jan 16 2025 *)
PROG
(PARI) apply(x->(x^4 + x^3 + x^2 + x + 5 + (x%2)), select(isprimepower, [1..100])) \\ Michel Marcus, Jan 16 2025
CROSSREFS
Cf. A000961 (without 1), A188161, A224790, A225928-A225938.
Sequence in context: A098218 A247679 A344013 * A209370 A219717 A220481
KEYWORD
nonn
AUTHOR
Eric M. Schmidt, May 21 2013
STATUS
approved