login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A284876
Positive integers that are square roots of products a*(a+d)*(a+2*d) with coprime a > 0, d >= 0.
4
1, 35, 120, 1189, 1547, 1560, 2737, 4080, 8400, 13175, 24360, 29520, 31080, 39997, 40391, 52633, 62279, 65773, 80520, 93023, 131040, 133055, 133560, 185640, 212219, 240240, 241345, 379680, 385440, 393805, 399960, 434231, 449497, 471240, 510229, 555360, 585395
OFFSET
1,2
COMMENTS
The main entry for this sequence is A284666, formed by the triples a, a+d, a+2*d. The pairs a, d form A284874.
sqrt((1+d)*(1+2*d)) is a member if and only if d is in A078522. The values of sqrt((1+d)*(1+2*d)) form the subsequence A046176.
LINKS
Giovanni Resta, Table of n, a(n) for n = 1..416 (terms < 10^9)
FORMULA
a(k+1)^2 = A284666(3*k+1)*A284666(3*k+2)*A284666(3*k+3) = A284874(2*k+1)*(A284874(2*k+1) + A284874(2*k+2))*(A284874(2*k+1) + 2*A284874(2*k+2)) for k >= 0.
EXAMPLE
gcd(1,24)=1 and 1*(1+24)*(1+2*24) = 25*49 = (5*7)^2, so 5*7 = 35 is a member.
gcd(18,7)=1 and 18*(18+7)*(18+2*7) = 18*25*32 = 9*25*64 = (3*5*8)^2, so 3*5*8 = 120 is in the sequence.
MATHEMATICA
nn = 50000; t = {};
p[a_, b_, c_] := a b c; Do[
If[p[a, a + d, a + 2 d] <= 2 nn^2 && GCD[a, d] == 1 &&
IntegerQ[Sqrt[p[a, a + d, a + 2 d]]],
AppendTo[t, Sqrt[p[a, a + d, a + 2 d]]]], {a, 1, nn}, {d, 0, nn}]; Sort[t]
PROG
(PARI) is(n, s)={!fordiv(n*=n, a, a^3>n && return; issquare(n\a*8+a^2, &s) && (s-=3*a)%4==0 && gcd(s\4, a)==1 && break)} \\ M. F. Hasler, Apr 06 2017
CROSSREFS
KEYWORD
nonn
AUTHOR
Jonathan Sondow, Apr 05 2017
EXTENSIONS
a(19)-a(37) from Giovanni Resta, Apr 06 2017
STATUS
approved