login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A096503
Euler-phi of these numbers is a decimal repdigit.
17
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 15, 16, 18, 20, 23, 24, 30, 46, 67, 69, 89, 92, 115, 134, 138, 178, 184, 223, 230, 276, 446, 669, 892, 1043, 1115, 1338, 1341, 1784, 2086, 2230, 2676, 2682, 446669, 666667, 893338, 895043, 902423, 1333334, 1340007, 1786676
OFFSET
1,2
LINKS
D. Bressoud, CNT.m Computational Number Theory Mathematica package.
EXAMPLE
n=88888892, A000010(n)=44444444.
Regular solutions: if x=repdigit+1 is prime, then phi[x]=repdigit (see A028988).
MATHEMATICA
Needs["CNT`"]; t = {PhiInverse[1]}; Do[n = FromDigits[Table[i, {j}]]; AppendTo[t, PhiInverse[n]], {j, 18}, {i, 2, 8, 2}]; t2 = Union[Flatten[t]]; t (* T. D. Noe, Feb 25 2014 *)
Select[Range[2*10^5], Length@ Union@ IntegerDigits@ EulerPhi@ # == 1 &] (* Michael De Vlieger, Jul 02 2016 *)
PROG
(PARI) isok(n) = d = digits(eulerphi(n)); vecmin(d) == vecmax(d); \\ Michel Marcus, Feb 25 2014
CROSSREFS
Sequence in context: A243356 A347933 A117296 * A055238 A100952 A303332
KEYWORD
base,nonn
AUTHOR
Labos Elemer, Jul 12 2004
STATUS
approved