login
A096501
Difference between primes preceding n+1 and n.
3
0, 4, 1, 0, 2, 0, 2, 0, 0, 0, 4, 0, 2, 0, 0, 0, 4, 0, 2, 0, 0, 0, 4, 0, 0, 0, 0, 0, 6, 0, 2, 0, 0, 0, 0, 0, 6, 0, 0, 0, 4, 0, 2, 0, 0, 0, 4, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 6, 0, 2, 0, 0, 0, 0, 0, 6, 0, 0, 0, 4, 0, 2, 0, 0, 0, 0, 0, 6, 0, 0, 0, 4, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 8, 0, 0, 0, 4, 0, 2, 0, 0
OFFSET
1,2
COMMENTS
Valus a(1) = 0 and a(2) = 4 are based on convention in Mathematica-language that PreviousPrime(1) = PreviousPrime(2) = -2. - Antti Karttunen, Jan 03 2019
FORMULA
For n > 2, a(n) = A010051(n) * A001223(A000720(n)-1) = A136548(1+n)-A136548(n). - Antti Karttunen, Jan 03 2019
a(n) = A007917(n) - A007917(n-1), for n > 2. - Ridouane Oudra, Oct 05 2024
MAPLE
0, 4, seq(prevprime(n+1)-prevprime(n), n=3..150); # Muniru A Asiru, Jan 03 2019
MATHEMATICA
<<NumberTheory`NumberTheoryFunctions` Table[PreviousPrime[n+1]-PreviousPrime[n], {n, 1, 256}]
Differences[NextPrime[Range[110], -1]] (* Harvey P. Dale, Jul 09 2017 *)
PROG
(PARI)
A136548(n) = if(n<3, 1, precprime(n-1));
A096501(n) = if(2==n, 4, A136548(1+n)-A136548(n)); \\ Antti Karttunen, Jan 03 2019
KEYWORD
nonn
AUTHOR
Labos Elemer, Jul 09 2004
STATUS
approved