login
A336694
a(n) = A329697(1+sigma(n)), where A329697 is totally additive with a(2) = 0 and a(p) = 1 + a(p-1) for odd primes.
10
0, 0, 1, 0, 2, 2, 2, 0, 2, 3, 2, 3, 2, 2, 2, 0, 3, 1, 3, 4, 3, 3, 2, 3, 0, 4, 2, 4, 3, 3, 3, 0, 4, 3, 4, 3, 3, 3, 4, 4, 4, 2, 3, 2, 4, 3, 4, 3, 3, 4, 3, 4, 3, 4, 3, 4, 4, 4, 3, 4, 4, 2, 4, 0, 2, 4, 4, 5, 2, 4, 3, 4, 3, 4, 3, 5, 2, 4, 4, 3, 3, 5, 2, 4, 4, 5, 4, 4, 4, 5, 3, 4, 5, 4, 4, 5, 4, 4, 4, 4, 3, 5, 4, 5, 2
OFFSET
1,5
FORMULA
a(n) = A329697(1+A000203(n)) = A329697(A088580(n)) = A329697(A332459(n)).
PROG
(PARI)
A329697(n) = { my(f=factor(n)); sum(k=1, #f~, if(2==f[k, 1], 0, f[k, 2]*(1+A329697(f[k, 1]-1)))); };
A336694(n) = A329697(1+sigma(n));
KEYWORD
nonn
AUTHOR
Antti Karttunen, Jul 31 2020
STATUS
approved