login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A088580
a(n) = 1 + sigma(n).
25
2, 4, 5, 8, 7, 13, 9, 16, 14, 19, 13, 29, 15, 25, 25, 32, 19, 40, 21, 43, 33, 37, 25, 61, 32, 43, 41, 57, 31, 73, 33, 64, 49, 55, 49, 92, 39, 61, 57, 91, 43, 97, 45, 85, 79, 73, 49, 125, 58, 94, 73, 99, 55, 121, 73, 121, 81, 91, 61, 169, 63, 97, 105, 128, 85, 145, 69, 127, 97
OFFSET
1,1
COMMENTS
Number of reflection subgroups of the (dihedral) Coxeter group of type I_2(n).
FORMULA
a(n) = 1 + A000203(n).
G.f.: x/(1 - x) + Sum_{k>=1} x^k/(1 - x^k)^2. - Ilya Gutkovskiy, Mar 17 2017
EXAMPLE
a(2)=4. If W=<s, t|s^2=t^2=1, st=ts> then the reflection subgroups are {1}, <s>, <t>, <s, t>.
MAPLE
map(1+numtheory:-sigma, [$1..1000]); # Robert Israel, May 29 2015
MATHEMATICA
Table[1 + DivisorSigma[1, n], {n, 100}] (* Robert Price, May 29 2015 *)
PROG
(Haskell)
a088580 = (+ 1) . a000203 -- Reinhard Zumkeller, Dec 20 2014
(Magma) [1+SumOfDivisors(n): n in [1..100]]; // Vincenzo Librandi, May 30 2015
CROSSREFS
Cf. A000203 (sum of divisors of n).
Cf. A065512 (indices of primes in this sequence), A258430 (corresponding primes).
Sequence in context: A340781 A328105 A144831 * A036699 A036694 A085624
KEYWORD
easy,nonn
AUTHOR
James East, Nov 20 2003
STATUS
approved