login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A088581
a(n) = n*x^n + (n-1)*x^(n-1) + . . . + x + 1 for x=3.
2
1, 4, 22, 103, 427, 1642, 6016, 21325, 73813, 250960, 841450, 2790067, 9167359, 29893558, 96855124, 312088729, 1000836265, 3196219036, 10169787838, 32252755711, 101988443731, 321655860994, 1012039172392, 3177332285413, 9955641160957, 31137856397032
OFFSET
0,2
COMMENTS
Sum of reciprocals = 1.308346570619799777189561356..
FORMULA
a(n) = 1/4 * ((6*n-3)*3^n + 7).
a(n) = 6*a(n-1)-8*a(n-2)-6*a(n-3)+9*a(n-4) for n>3. - Colin Barker, Jun 13 2015
G.f.: -(9*x^2-3*x+1) / ((x-1)*(3*x-1)^2). - Colin Barker, Jun 13 2015
EXAMPLE
3*3^3 + 2*3^2 + 3 + 1 = 103.
MATHEMATICA
LinearRecurrence[{6, -8, -6, 9}, {1, 4, 22, 103}, 50] (* Vincenzo Librandi, Jun 14 2015 *)
LinearRecurrence[{7, -15, 9}, {1, 4, 22}, 26] (* Ray Chandler, Aug 03 2015 *)
PROG
(PARI) trajpolypn(n1, k) = { s=0; for(x1=0, n1, y1 = polypn2(k, x1); print1(y1", "); s+=1.0/y1; ); print(); print(s) }
polypn2(n, p) = { x=n; y=1; for(m=1, p, y=y+m*x^m; ); return(y) }
(PARI) Vec(-(9*x^2-3*x+1)/((x-1)*(3*x-1)^2) + O(x^100)) \\ Colin Barker, Jun 13 2015
(Magma) [1/4 * ((6*n-3)*3^n + 7): n in [0..30]]; // Vincenzo Librandi, Jun 14 2015
CROSSREFS
Sequence in context: A007901 A368289 A254861 * A017970 A220740 A099013
KEYWORD
nonn,easy
AUTHOR
Cino Hilliard, Nov 20 2003
STATUS
approved