login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A088579
Primes of the form n*x^n + (n-1)*x^(n-1) + . . . + x + 1 for x=2.
1
3, 11, 643, 425987, 1909526242005090307
OFFSET
1,1
COMMENTS
Sum of reciprocals = 0.4257999816852453227652727311..
Next term is too large to include.
LINKS
EXAMPLE
2*2^2 + 1*2 + 1 = 11 is prime.
MATHEMATICA
Select[Table[1+Sum[k 2^k, {k, n}], {n, 1000}], PrimeQ] (* T. D. Noe, Nov 15 2006 *)
PROG
(PARI) polypn2(n, p) = { my(x=n, y=1); for(m=1, p, y=y+m*x^m; ); return(y) }
trajpolyp(n1, k) = { my(s=0); for(x1=0, n1, y1 = polypn2(k, x1); if(isprime(y1), print1(y1, ", "); s+=1.0/y1; ) ); }
trajpolyp(500, 2)
CROSSREFS
Cf. A055469 (for x=1), A088584 (for x=3), A088583 (for x=4).
Sequence in context: A337415 A264725 A374558 * A344946 A368618 A374718
KEYWORD
nonn
AUTHOR
Cino Hilliard, Nov 20 2003
EXTENSIONS
Corrected by T. D. Noe and Don Reble, Nov 15 2006
STATUS
approved