login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A088584
Primes of the form n*x^n + (n-1)*x^(n-1) + . . . + x + 1 for x=3.
1
103, 312088729, 9955641160957, 163142317702973500798039087, 327058383882861814163660125754017, 67973813526967723994124686175157751059, 545249446055539622797498212423248888694512551610580463
OFFSET
1,1
COMMENTS
Sum of reciprocals = 0.009708741068395080316898549713.. Are these primes infinite?
The next term (a(8)) has 148 digits. - Harvey P. Dale, Dec 15 2018
EXAMPLE
3*3^3 + 2*3^2 + 3 + 1 = 103.
MATHEMATICA
Select[Accumulate[Join[{1}, Table[n*3^n, {n, 200}]]], PrimeQ] (* Harvey P. Dale, Dec 15 2018 *)
PROG
(PARI) trajpolyp(n1, k) = { s=0; for(x1=0, n1, y1 = polypn2(k, x1); if(isprime(y1), print1(y1", "); s+=1.0/y1; ) ); print(); print(s) } polypn2(n, p) = { x=n; y=1; for(m=0, p, y=y+m*x^m; ); return(y) }
CROSSREFS
Sequence in context: A245495 A097726 A262273 * A238490 A097014 A106297
KEYWORD
nonn
AUTHOR
Cino Hilliard, Nov 20 2003
EXTENSIONS
More terms from Harvey P. Dale, Dec 15 2018
STATUS
approved