Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #20 Mar 17 2013 17:26:31
%S 0,1,0,1,0,1,1,1,1,2,2,2,0,2,3,2,2,2,2,1,2,3,4,1,3,3,2,3,3,3,2,1,3,2,
%T 4,4,3,2,1,2,7,4,2,2,4,3,4,7,3,5,7,4,6,5,4,2,8,4,3,4,2,5,7,7,4,3,8,4,
%U 1,3,2,10,4,5,4,6,7,8,6,6,1,6,8,8,7,7,6,7,4,10
%N Number of primes between n^3 - n and n^3.
%C Conjecture: a(n) > 0 for n > 13.
%H Alois P. Heinz, <a href="/A216265/b216265.txt">Table of n, a(n) for n = 1..10000</a>
%F a(n) = A000720(n^3) - A000720(n^3-n).
%e a(9) = 1 because between 9^3 - 9 and 9^3 there is just one prime (727).
%e a(10) = 2 because between 10^3 - 10 and 10^3 there are two primes (991 and 997).
%e a(11) = 2 because between 11^3 - 11 and 11^3 there are two primes (1321 and 1327).
%p a:= n-> add(`if`(isprime(t), 1, 0), t=n^3-n..n^3):
%p seq(a(n), n=1..100); # _Alois P. Heinz_, Mar 17 2013
%t Table[PrimePi[n^3] - PrimePi[n^3 - n], {n, 100}] (* _Alonso del Arte_, Mar 17 2013 *)
%o (Java)
%o import java.math.BigInteger;
%o public class A216265 {
%o public static void main (String[] args) {
%o for (long n = 1; n < (1 << 21); n++) {
%o long cube = n*n*n, c = 0;
%o for (long k = cube - n; k < cube; ++k) {
%o BigInteger b1 = BigInteger.valueOf(k);
%o if (b1.isProbablePrime(2)) {
%o if (b1.isProbablePrime(80))
%o ++c;
%o }
%o }
%o System.out.printf("%d, ", c);
%o }
%o }
%o } // Ratushnyak
%o (PARI)
%o default(primelimit,10^7);
%o a(n) = primepi(n^3) - primepi(n^3-n);
%o /* _Joerg Arndt_, Mar 16 2013 */
%Y Cf. A094189, A216266.
%K nonn
%O 1,10
%A _Alex Ratushnyak_, Mar 15 2013