login
A223175
Smallest prime q such that 2n+1 = p + 8*q for some odd prime p, or 0 if no such prime exists.
4
0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, 0, 2, 2, 3, 2, 2, 3, 2, 3, 3, 2, 2, 0, 5, 2, 3, 2, 2, 3, 2, 3, 3, 2, 3, 7, 2, 2, 7, 5, 2, 3, 2, 2, 3, 5, 2, 3, 2, 5, 3, 2, 3, 7, 5, 2, 7, 2, 2, 3, 2, 2, 3, 2, 3, 3, 7, 3, 7, 5, 2, 7, 2, 5, 3, 2, 2, 7, 7, 3, 3, 2, 2, 7, 5, 2
OFFSET
0,10
COMMENTS
For n > 8, a(12) = a(24) = 0.
The corresponding p: 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 5, 7, 0, 11, 13, 7, 17, 19, 13, 23, 17, 19, 29, 31, 0, 11,... are not always the minimum values. The smallest primes p are in A223174.
Conjecture: except m = 25 and 49, all odd numbers > 17 are of the form m = p + 8*q where p and q are prime numbers.
LINKS
EXAMPLE
a(14) = 2 because, for q=2 the corresponding p=13 and 13+8*2 = 29 is prime.
MAPLE
for n from 1 by 2 to 200 do:jj:=0:for j from 1 to 1000 while (jj=0) do:q:=ithprime(j):p:=n-8*q:if p> 0 and type(p, prime)=true then jj:=1:printf(`%d, `, q):else fi:od:if jj=0 then printf(`%d, `, 0):else fi:od:
CROSSREFS
KEYWORD
nonn
AUTHOR
Michel Lagneau, May 09 2013
STATUS
approved