login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A033462
Exponential (or "EXP") transform of squares A000290.
13
1, 1, 5, 22, 125, 836, 6277, 52396, 479593, 4757680, 50738921, 577894604, 6990138685, 89376020800, 1203182518189, 16995248375116, 251135780602193, 3871961504546624, 62141329025501905, 1035979079450355532, 17907209511611407141, 320387246623657457056, 5924125441456047522005
OFFSET
0,3
COMMENTS
a(n) is the number of ways to select an ordered pair from each equivalence class in each equivalence relation on {1,2,...,n}. - Geoffrey Critzer, Oct 03 2011
LINKS
FORMULA
E.g.f.: exp(exp(x)*(x+x^2)).
MAPLE
a:= proc(n) option remember; `if`(n=0, 1,
add(binomial(n-1, j-1)*j^2*a(n-j), j=1..n))
end:
seq(a(n), n=0..25); # Alois P. Heinz, Mar 30 2016
MATHEMATICA
Range[0, 20]! CoefficientList[Series[Exp[Exp[x](x+x^2)], {x, 0, 20}], x]
Table[Sum[BellY[n, k, Range[n]^2], {k, 0, n}], {n, 0, 20}] (* Vladimir Reshetnikov, Nov 09 2016 *)
PROG
(PARI)
N=33; x='x+O('x^N);
egf=exp(x*(1+x)*exp(x));
Vec(serlaplace(egf))
/* Joerg Arndt, Sep 15 2012 */
CROSSREFS
Column k=2 of A279636.
Sequence in context: A265998 A203265 A355886 * A111154 A221539 A372139
KEYWORD
nonn
STATUS
approved