login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Exponential (or "EXP") transform of squares A000290.
13

%I #21 Dec 16 2016 10:19:56

%S 1,1,5,22,125,836,6277,52396,479593,4757680,50738921,577894604,

%T 6990138685,89376020800,1203182518189,16995248375116,251135780602193,

%U 3871961504546624,62141329025501905,1035979079450355532,17907209511611407141,320387246623657457056,5924125441456047522005

%N Exponential (or "EXP") transform of squares A000290.

%C a(n) is the number of ways to select an ordered pair from each equivalence class in each equivalence relation on {1,2,...,n}. - _Geoffrey Critzer_, Oct 03 2011

%H Alois P. Heinz, <a href="/A033462/b033462.txt">Table of n, a(n) for n = 0..500</a>

%F E.g.f.: exp(exp(x)*(x+x^2)).

%p a:= proc(n) option remember; `if`(n=0, 1,

%p add(binomial(n-1, j-1)*j^2*a(n-j), j=1..n))

%p end:

%p seq(a(n), n=0..25); # _Alois P. Heinz_, Mar 30 2016

%t Range[0,20]! CoefficientList[Series[Exp[Exp[x](x+x^2)],{x,0,20}],x]

%t Table[Sum[BellY[n, k, Range[n]^2], {k, 0, n}], {n, 0, 20}] (* _Vladimir Reshetnikov_, Nov 09 2016 *)

%o (PARI)

%o N=33; x='x+O('x^N);

%o egf=exp(x*(1+x)*exp(x));

%o Vec(serlaplace(egf))

%o /* _Joerg Arndt_, Sep 15 2012 */

%Y Column k=2 of A279636.

%K nonn

%O 0,3

%A _N. J. A. Sloane_