login
A308864
a(n) = Sum_{k>=0} (n*k + 1)^n/2^(k+1).
1
1, 2, 17, 442, 22833, 1942026, 245246761, 43001877122, 9986424563009, 2965574161158490, 1095862246322273601, 493067173454342315346, 265360795458419332828657, 168311426029488910748596394, 124248479512164840358578103577, 105608722927065949313865618984226
OFFSET
0,2
FORMULA
a(n) = n! * [x^n] exp(x)/(2 - exp(n*x)).
a(n) = Sum_{k=0..n} binomial(n,k) * n^k * A000670(k).
a(n) ~ sqrt(Pi/2) * n^(2*n + 1/2) / (log(2)^(n+1) * exp(n)). - Vaclav Kotesovec, Jun 29 2019
MATHEMATICA
Table[Sum[(n k + 1)^n/2^(k + 1), {k, 0, Infinity}], {n, 0, 15}]
Table[n! SeriesCoefficient[Exp[x]/(2 - Exp[n x]), {x, 0, n}], {n, 0, 15}]
Join[{1}, Table[Sum[Binomial[n, k] n^k HurwitzLerchPhi[1/2, -k, 0]/2, {k, 0, n}], {n, 1, 15}]]
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Jun 29 2019
STATUS
approved