The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A308864 a(n) = Sum_{k>=0} (n*k + 1)^n/2^(k+1). 1
 1, 2, 17, 442, 22833, 1942026, 245246761, 43001877122, 9986424563009, 2965574161158490, 1095862246322273601, 493067173454342315346, 265360795458419332828657, 168311426029488910748596394, 124248479512164840358578103577, 105608722927065949313865618984226 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS FORMULA a(n) = n! * [x^n] exp(x)/(2 - exp(n*x)). a(n) = Sum_{k=0..n} binomial(n,k) * n^k * A000670(k). a(n) ~ sqrt(Pi/2) * n^(2*n + 1/2) / (log(2)^(n+1) * exp(n)). - Vaclav Kotesovec, Jun 29 2019 MATHEMATICA Table[Sum[(n k + 1)^n/2^(k + 1), {k, 0, Infinity}], {n, 0, 15}] Table[n! SeriesCoefficient[Exp[x]/(2 - Exp[n x]), {x, 0, n}], {n, 0, 15}] Join[{1}, Table[Sum[Binomial[n, k] n^k HurwitzLerchPhi[1/2, -k, 0]/2, {k, 0, n}], {n, 1, 15}]] CROSSREFS Cf. A000629, A000670, A080253, A285067, A307066. Sequence in context: A085617 A152557 A015202 * A217284 A220476 A293178 Adjacent sequences:  A308861 A308862 A308863 * A308865 A308866 A308867 KEYWORD nonn AUTHOR Ilya Gutkovskiy, Jun 29 2019 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 20 01:09 EDT 2021. Contains 345154 sequences. (Running on oeis4.)