login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A308864 a(n) = Sum_{k>=0} (n*k + 1)^n/2^(k+1). 0
1, 2, 17, 442, 22833, 1942026, 245246761, 43001877122, 9986424563009, 2965574161158490, 1095862246322273601, 493067173454342315346, 265360795458419332828657, 168311426029488910748596394, 124248479512164840358578103577, 105608722927065949313865618984226 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

Table of n, a(n) for n=0..15.

FORMULA

a(n) = n! * [x^n] exp(x)/(2 - exp(n*x)).

a(n) = Sum_{k=0..n} binomial(n,k) * n^k * A000670(k).

a(n) ~ sqrt(Pi/2) * n^(2*n + 1/2) / (log(2)^(n+1) * exp(n)). - Vaclav Kotesovec, Jun 29 2019

MATHEMATICA

Table[Sum[(n k + 1)^n/2^(k + 1), {k, 0, Infinity}], {n, 0, 15}]

Table[n! SeriesCoefficient[Exp[x]/(2 - Exp[n x]), {x, 0, n}], {n, 0, 15}]

Join[{1}, Table[Sum[Binomial[n, k] n^k HurwitzLerchPhi[1/2, -k, 0]/2, {k, 0, n}], {n, 1, 15}]]

CROSSREFS

Cf. A000629, A000670, A080253, A285067, A307066.

Sequence in context: A085617 A152557 A015202 * A217284 A220476 A293178

Adjacent sequences:  A308861 A308862 A308863 * A308865 A308866 A308867

KEYWORD

nonn

AUTHOR

Ilya Gutkovskiy, Jun 29 2019

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 22 05:00 EDT 2019. Contains 326172 sequences. (Running on oeis4.)