login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A307066
a(n) = exp(-1) * Sum_{k>=0} (n*k + 1)^n/k!.
5
1, 2, 13, 199, 5329, 216151, 12211597, 909102342, 85761187393, 9957171535975, 1390946372509101, 229587693339867567, 44117901231194922193, 9748599124579281064294, 2451233017637221706477037, 695088863051920283838281851, 220558203335628758134165860609
OFFSET
0,2
LINKS
FORMULA
a(n) = n! * [x^n] exp(exp(n*x) + x - 1).
a(n) = Sum_{k=0..n} binomial(n,k) * n^k * Bell(k).
MATHEMATICA
Table[Exp[-1] Sum[(n k + 1)^n/k!, {k, 0, Infinity}], {n, 0, 16}]
Table[n! SeriesCoefficient[Exp[Exp[n x] + x - 1], {x, 0, n}], {n, 0, 16}]
Join[{1}, Table[Sum[Binomial[n, k] n^k BellB[k], {k, 0, n}], {n, 1, 16}]]
PROG
(Magma)
A307066:= func< n | (&+[Binomial(n, k)*n^k*Bell(k): k in [0..n]]) >;
[A307066(n): n in [0..31]]; // G. C. Greubel, Jan 24 2024
(SageMath)
def A307066(n): return sum(binomial(n, k)*n^k*bell_number(k) for k in range(n+1))
[A307066(n) for n in range(31)] # G. C. Greubel, Jan 24 2024
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Jun 24 2019
STATUS
approved