login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A308861 Expansion of e.g.f. 1/(1 - x*(1 + x)*exp(x)). 6
1, 1, 6, 39, 352, 3965, 53556, 844123, 15204960, 308118105, 6937562980, 171826160231, 4642588564032, 135891789038629, 4283619809941668, 144674451274329075, 5211965027738046016, 199498704931954788785, 8085413817213212761668, 345895984008645703002559 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

LINKS

Table of n, a(n) for n=0..19.

FORMULA

E.g.f.: 1 / (1 - Sum_{k>=1} k^2*x^k/k!).

a(0) = 1; a(n) = Sum_{k=1..n} binomial(n,k) * k^2 * a(n-k).

a(n) ~ n! / (r^(n+1) * exp(r) * (1 + 3*r + r^2)), where r = A201941 = 0.44413022882396659058546632949098466707932096994213775695918... is the root of the equation exp(r)*r*(1 + r) = 1. - Vaclav Kotesovec, Jun 29 2019

MATHEMATICA

nmax = 19; CoefficientList[Series[1/(1 - x (1 + x) Exp[x]), {x, 0, nmax}], x] Range[0, nmax]!

a[0] = 1; a[n_] := a[n] = Sum[Binomial[n, k] k^2 a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 19}]

CROSSREFS

Cf. A000290, A006153, A033453, A033462, A302189, A308862.

Sequence in context: A265953 A246571 A031972 * A124577 A006678 A252761

Adjacent sequences:  A308858 A308859 A308860 * A308862 A308863 A308864

KEYWORD

nonn

AUTHOR

Ilya Gutkovskiy, Jun 29 2019

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 9 08:17 EST 2021. Contains 349627 sequences. (Running on oeis4.)