The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A308861 Expansion of e.g.f. 1/(1 - x*(1 + x)*exp(x)). 6
 1, 1, 6, 39, 352, 3965, 53556, 844123, 15204960, 308118105, 6937562980, 171826160231, 4642588564032, 135891789038629, 4283619809941668, 144674451274329075, 5211965027738046016, 199498704931954788785, 8085413817213212761668, 345895984008645703002559 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 LINKS FORMULA E.g.f.: 1 / (1 - Sum_{k>=1} k^2*x^k/k!). a(0) = 1; a(n) = Sum_{k=1..n} binomial(n,k) * k^2 * a(n-k). a(n) ~ n! / (r^(n+1) * exp(r) * (1 + 3*r + r^2)), where r = A201941 = 0.44413022882396659058546632949098466707932096994213775695918... is the root of the equation exp(r)*r*(1 + r) = 1. - Vaclav Kotesovec, Jun 29 2019 MATHEMATICA nmax = 19; CoefficientList[Series[1/(1 - x (1 + x) Exp[x]), {x, 0, nmax}], x] Range[0, nmax]! a[0] = 1; a[n_] := a[n] = Sum[Binomial[n, k] k^2 a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 19}] CROSSREFS Cf. A000290, A006153, A033453, A033462, A302189, A308862. Sequence in context: A265953 A246571 A031972 * A124577 A006678 A252761 Adjacent sequences:  A308858 A308859 A308860 * A308862 A308863 A308864 KEYWORD nonn AUTHOR Ilya Gutkovskiy, Jun 29 2019 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 9 08:17 EST 2021. Contains 349627 sequences. (Running on oeis4.)