login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A260149
Expansion of f(q) * phi(q) in powers of q where f() is a Ramanujan theta function and phi() is a 6th-order mock theta function.
0
1, 0, 2, 0, 2, -2, 0, 0, 2, 0, 2, 0, 0, -4, 2, 2, 2, -4, 0, 0, 2, 2, 2, 0, -2, -4, 4, 0, 2, -4, -2, 0, 2, 2, 4, 0, 0, -4, 0, 2, 4, -4, -2, 0, 2, 0, 0, 0, -2, -4, 6, 2, 2, -4, 0, -2, 2, 4, 4, 0, -2, -4, 0, 0, 2, -6, -2, 0, 2, 4, 2, 0, 0, -4, 4, 0, 2, -2, -2, 0
OFFSET
0,3
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
REFERENCES
Srinivasa Ramanujan, The Lost Notebook and Other Unpublished Papers, Narosa Publishing House, New Delhi, 1988, p. 4, 5th equation.
LINKS
FORMULA
Convolution of A080995 and A053268.
G.f.: Sum_{k in Z} x^(k*(3*k + 1)/2) * (1 + x^(2*k)) / (1 + x^(3*k)).
EXAMPLE
G.f. = 1 + 2*x^2 + 2*x^4 - 2*x^5 + 2*x^8 + 2*x^10 - 4*x^13 + 2*x^14 + ...
MATHEMATICA
a[ n_] := If[ n < 0, 0, SeriesCoefficient[ 1 + 2 Sum[ x^(k (3 k + 1)/2) (1 + x^(2 k)) / (1 + x^(3 k)), {k, (Sqrt[ 24 n + 1] - 1) / 6}], {x, 0, n}]];
a[ n_] := If[ n < 0, 0, SeriesCoefficient[ EllipticTheta[ 4, 0, x^3] QPochhammer[ -x, x] Sum[ (-1)^k x^k^2 QPochhammer[ x, x^2, k] / QPochhammer[ -x, x, 2 k], {k, 0, Sqrt @ n}], {x, 0, n}]];
PROG
(PARI) {a(n) = if( n<0, 0, polcoeff( sum(k=1, (sqrtint(24*n + 1)-1)\6, 2 * x^(k*(3*k + 1)/2) * (1 + x^(2*k)) / (1 + x^(3*k)), 1 + x * O(x^n)), n))};
CROSSREFS
Sequence in context: A373924 A028928 A343723 * A091379 A151758 A365538
KEYWORD
sign
AUTHOR
Michael Somos, Nov 08 2015
STATUS
approved