The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A162666 a(n) = 20*a(n-1) - 98*a(n-2) for n > 1; a(0) = 1, a(1) = 10. 1
 1, 10, 102, 1060, 11204, 120200, 1306008, 14340560, 158822416, 1771073440, 19856872032, 223572243520, 2525471411264, 28599348360320, 324490768902528, 3687079238739200, 41941489422336256, 477496023050283520 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Binomial transform of A147960. Tenth binomial transform of A077957. LINKS G. C. Greubel, Table of n, a(n) for n = 0..940 Index entries for linear recurrences with constant coefficients, signature (20,-98). FORMULA a(n) = ((10+sqrt(2))^n + (10-sqrt(2))^n)/2. G.f.: (1-10*x)/(1-20*x+98*x^2). E.g.f.: exp(10*x)*cosh(sqrt(2)*x). - Ilya Gutkovskiy, Aug 11 2017 MAPLE seq(coeff(series((1-10*x)/(1-20*x+98*x^2), x, n+1), x, n), n = 0..20); # G. C. Greubel, Aug 27 2019 MATHEMATICA Union[Flatten[NestList[{#[[2]], 20#[[2]]-98#[[1]]}&, {1, 10}, 20]]]  (* Harvey P. Dale, Feb 25 2011 *) LinearRecurrence[{20, -98}, {1, 10}, 20] (* G. C. Greubel, Aug 27 2019 *) PROG (MAGMA) [ n le 2 select 9*n-8 else 20*Self(n-1)-98*Self(n-2): n in [1..18] ]; (PARI) my(x='x+O('x^20)); Vec((1-10*x)/(1-20*x+98*x^2)) \\ G. C. Greubel, Aug 27 2019 (Sage) def A162666_list(prec):     P. = PowerSeriesRing(ZZ, prec)     return P((1-10*x)/(1-20*x+98*x^2)).list() A162666_list(20) # G. C. Greubel, Aug 27 2019 (GAP) a:=[1, 10];; for n in [3..20] do a[n]:=20*a[n-1]-98*a[n-2]; od; a; # G. C. Greubel, Aug 27 2019 CROSSREFS Cf. A147960, A077957. Sequence in context: A147636 A191014 A147550 * A061630 A062806 A336952 Adjacent sequences:  A162663 A162664 A162665 * A162667 A162668 A162669 KEYWORD nonn,easy AUTHOR Klaus Brockhaus, Jul 20 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 5 19:09 EDT 2021. Contains 343573 sequences. (Running on oeis4.)