login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A186758
Number of permutations of {1,2,...,n} with no increasing cycles of length >=2. A cycle (b(1), b(2), ...) is said to be increasing if, when written with its smallest element in the first position, it satisfies b(1)<b(2)<b(3)<... .
8
1, 1, 1, 2, 10, 59, 363, 2491, 19661, 176536, 1767540, 19460671, 233578585, 3036411429, 42507793209, 637606959466, 10201702712738, 173429224591607, 3121728583605435, 59312852905363623, 1186257030934984061, 24911396924131631880, 548050726738352726108
OFFSET
0,4
COMMENTS
a(n) = A186757(n,0).
LINKS
FORMULA
E.g.f.: exp(1+z-exp(z))/(1-z).
a(n) ~ n! * exp(2-exp(1)). - Vaclav Kotesovec, Oct 05 2013
a(n) = Sum_{k=0..1} A186754(n,k). - Alois P. Heinz, Dec 02 2021
EXAMPLE
a(3)=2 because we have (1)(2)(3) and (132).
a(4)=10 because we have (1)(2)(34), (1)(243), (132)(4), (142)(3), (143)(2), and the 5 cyclic permutations of {1,2,3,4} different from (1234).
MAPLE
g := exp(1+z-exp(z))/(1-z): gser := series(g, z = 0, 25): seq(factorial(n)*coeff(gser, z, n), n = 0 .. 22);
# second Maple program:
a:= proc(n) option remember; `if`(n=0, 1, add(a(n-j)*
binomial(n-1, j-1)*((j-1)!-`if`(j=1, 0, 1)), j=1..n))
end:
seq(a(n), n=0..25); # Alois P. Heinz, Apr 13 2017
MATHEMATICA
CoefficientList[Series[E^(1+x-E^x)/(1-x), {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Oct 05 2013 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Emeric Deutsch, Feb 26 2011
STATUS
approved