login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A372415
Coefficient of x^n in the expansion of ( (1-x+x^3) / (1-x)^3 )^n.
2
1, 2, 10, 59, 366, 2332, 15121, 99276, 657894, 4391438, 29482320, 198865680, 1346655921, 9149295482, 62336961732, 425760311734, 2914151872614, 19983724103726, 137267022656710, 944287970305935, 6504676822047876, 44861522295224400, 309742638630690264
OFFSET
0,2
FORMULA
a(n) = Sum_{k=0..floor(n/3)} binomial(n,k) * binomial(3*n-2*k-1,n-3*k).
The g.f. exp( Sum_{k>=1} a(k) * x^k/k ) has integer coefficients and equals (1/x) * Series_Reversion( x * (1-x)^3 / (1-x+x^3) ). See A366052.
PROG
(PARI) a(n, s=3, t=1, u=3) = sum(k=0, n\s, binomial(t*n, k)*binomial((u-t+1)*n-(s-1)*k-1, n-s*k));
CROSSREFS
Cf. A366052.
Sequence in context: A309955 A340987 A186758 * A372476 A262910 A370281
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Apr 29 2024
STATUS
approved