login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A372416
Coefficient of x^n in the expansion of ( (1-x+x^3) / (1-x) )^(2*n).
2
1, 0, 0, 6, 8, 10, 78, 196, 376, 1446, 4390, 10648, 32822, 101426, 276976, 808666, 2449528, 7046942, 20491458, 61124482, 179376718, 525065722, 1556298700, 4598892274, 13546834582, 40109057710, 118836735758, 351539306142, 1041872654824, 3091535558296
OFFSET
0,4
FORMULA
a(n) = Sum_{k=0..floor(n/3)} binomial(2*n,k) * binomial(n-2*k-1,n-3*k).
The g.f. exp( Sum_{k>=1} a(k) * x^k/k ) has integer coefficients and equals (1/x) * Series_Reversion( x * (1-x)^2 / (1-x+x^3)^2 ). See A372418.
PROG
(PARI) a(n, s=3, t=2, u=2) = sum(k=0, n\s, binomial(t*n, k)*binomial((u-t+1)*n-(s-1)*k-1, n-s*k));
CROSSREFS
Sequence in context: A145749 A235599 A242778 * A184113 A309627 A085412
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Apr 29 2024
STATUS
approved