OFFSET
0,9
LINKS
Alois P. Heinz, Rows n = 0..140, flattened
FORMULA
E.g.f.: G(t,z) = exp((t-1)(exp(z)-1))/(1-z).
The 4-variate e.g.f. H(u,v,w,z) of permutations with respect to size (marked by z), number of fixed points (marked by u), number of increasing cycles of length >=2 (marked by v), and number of nonincreasing cycles (marked by w) is given by H(u,v,w,z) = exp(uz+v(exp(z)-1-z)+w(1-exp(z))/(1-z)^w. Remark: the nonincreasing cycles are necessarily of length >=3. We have: G(t,z)=H(t,t,1,z).
EXAMPLE
T(3,0)=1 because we have (132).
T(4,2)=7 because we have (1)(234), (13)(24), (12)(34), (123)(4), (124)(3), (134)(2), and (14)(23).
Triangle starts:
1;
0, 1;
0, 1, 1;
1, 1, 3, 1;
5, 5, 7, 6, 1;
23, 36, 25, 25, 10, 1;
MAPLE
G := exp((t-1)*(exp(z)-1))/(1-z); Gser := simplify(series(G, z = 0, 16)): for n from 0 to 10 do P[n] := sort(expand(factorial(n)*coeff(Gser, z, n))) end do: for n from 0 to 10 do seq(coeff(P[n], t, j), j = 0 .. n) end do; # yields sequence in triangular form
# second Maple program:
b:= proc(n) option remember; expand(`if`(n=0, 1, add(
b(n-i)*binomial(n-1, i-1)*(x+(i-1)!-1), i=1..n)))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n)):
seq(T(n), n=0..10); # Alois P. Heinz, Sep 25 2016
MATHEMATICA
b[n_] := b[n] = Expand[If[n==0, 1, Sum[b[n-i]*Binomial[n-1, i-1]*(x + (i-1)! - 1), {i, 1, n}]]]; T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 0, Exponent[p, x]}]][b[n]]; Table[T[n], {n, 0, 10}] // Flatten (* Jean-François Alcover, Oct 04 2016, after Alois P. Heinz *)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Emeric Deutsch, Feb 26 2011
STATUS
approved