login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A349788
Number of permutations of [n] having exactly one increasing cycle.
2
0, 1, 1, 1, 5, 36, 234, 1597, 12459, 111451, 1116277, 12298958, 147655760, 1919465237, 26870436345, 403044639709, 6448695657957, 109628096021612, 1973308547820586, 37492874766408001, 749857477972731979, 15747006284752049759, 346434131946498886045
OFFSET
0,5
COMMENTS
Cycle (b(1), b(2), ...) is said to be increasing if, when written with its smallest element in the first position, it satisfies b(1) < b(2) < ... .
Exponential convolution of A000587 with A002627.
LINKS
Wikipedia, Permutation
FORMULA
E.g.f.: exp(1-exp(x))*(exp(x)-1)/(1-x).
a(n) = A186758(n) - A186755(n).
a(n) = Sum_{j=0..n} binomial(n,j)*A000587(j)*A002627(n-j).
a(n) mod 2 = A131719(n).
a(n) ~ (exp(1) - 1) * exp(1 - exp(1)) * n!. - Vaclav Kotesovec, Dec 05 2021
EXAMPLE
a(4) = 5: (1)(243), (143)(2), (142)(3), (132)(4), (1234).
MAPLE
b:= proc(n) option remember; series(`if`(n=0, 1, add((x+
(j-1)!-1)*binomial(n-1, j-1)*b(n-j), j=1..n)), x, 2)
end:
a:= n-> coeff(b(n), x, 1):
seq(a(n), n=0..23);
MATHEMATICA
b[n_] := b[n] = Series[If[n == 0, 1, Sum[(x+
(j-1)!-1)*Binomial[n-1, j-1]*b[n-j], {j, 1, n}]], {x, 0, 2}];
a[n_] := Coefficient[b[n], x, 1];
Table[a[n], {n, 0, 23}] (* Jean-François Alcover, Apr 15 2022, after Alois P. Heinz *)
CROSSREFS
Column k=1 of A186754.
Sequence in context: A271055 A212329 A338487 * A015547 A067376 A098305
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Nov 30 2021
STATUS
approved