OFFSET
2,1
COMMENTS
The median of an even number of values is assumed to be defined as the arithmetic mean of the two central elements in their sorted list. The special case of the primes 2 and 3 in the interval [1,4] is excluded because their median would be 5/2.
LINKS
Hugo Pfoertner, Table of n, a(n) for n = 2..10000
MATHEMATICA
Table[Median@Select[Range[n^2, (n+1)^2], PrimeQ], {n, 2, 51}] (* Giorgos Kalogeropoulos, Dec 05 2021 *)
PROG
(PARI) medpsq(n) = {my(p1=nextprime(n^2), p2=precprime((n+1)^2), np1=primepi(p1), np2=primepi(p2), nm=(np1+np2)/2);
if(denominator(nm)==1, prime(nm), (prime(nm-1/2)+prime(nm+1/2))/2)};
for(k=2, 51, print1(medpsq(k), ", "))
(Python)
from sympy import primerange
from statistics import median
def a(n): return int(median(primerange(n**2, (n+1)**2)))
print([a(n) for n in range(2, 52)]) # Michael S. Branicky, Dec 05 2021
(Python)
from sympy import primepi, prime
def A349791(n):
b = primepi(n**2)+primepi((n+1)**2)+1
return (prime(b//2)+prime((b+1)//2))//2 if b % 2 else prime(b//2) # Chai Wah Wu, Dec 05 2021
CROSSREFS
KEYWORD
nonn
AUTHOR
Hugo Pfoertner, Dec 05 2021
STATUS
approved