login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A349791
a(n) is the median of the primes between n^2 and (n+1)^2.
2
6, 12, 19, 30, 42, 59, 72, 89, 107, 134, 157, 181, 205, 236, 271, 311, 348, 381, 421, 461, 503, 560, 601, 650, 701, 754, 821, 870, 933, 994, 1051, 1113, 1193, 1268, 1319, 1423, 1482, 1559, 1624, 1723, 1801, 1884, 1993, 2081, 2148, 2267, 2357, 2444, 2549, 2663
OFFSET
2,1
COMMENTS
The median of an even number of values is assumed to be defined as the arithmetic mean of the two central elements in their sorted list. The special case of the primes 2 and 3 in the interval [1,4] is excluded because their median would be 5/2.
LINKS
MATHEMATICA
Table[Median@Select[Range[n^2, (n+1)^2], PrimeQ], {n, 2, 51}] (* Giorgos Kalogeropoulos, Dec 05 2021 *)
PROG
(PARI) medpsq(n) = {my(p1=nextprime(n^2), p2=precprime((n+1)^2), np1=primepi(p1), np2=primepi(p2), nm=(np1+np2)/2);
if(denominator(nm)==1, prime(nm), (prime(nm-1/2)+prime(nm+1/2))/2)};
for(k=2, 51, print1(medpsq(k), ", "))
(Python)
from sympy import primerange
from statistics import median
def a(n): return int(median(primerange(n**2, (n+1)**2)))
print([a(n) for n in range(2, 52)]) # Michael S. Branicky, Dec 05 2021
(Python)
from sympy import primepi, prime
def A349791(n):
b = primepi(n**2)+primepi((n+1)**2)+1
return (prime(b//2)+prime((b+1)//2))//2 if b % 2 else prime(b//2) # Chai Wah Wu, Dec 05 2021
CROSSREFS
KEYWORD
nonn
AUTHOR
Hugo Pfoertner, Dec 05 2021
STATUS
approved