login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A349792
Numbers k such that k*(k+1) is the median of the primes between k^2 and (k+1)^2.
2
2, 3, 5, 6, 8, 25, 29, 38, 59, 101, 135, 217, 260, 295, 317, 455, 551, 686, 687, 720, 825, 912, 1193, 1233, 1300, 1879, 1967, 2200, 2576, 2719, 2857, 3303, 3512, 4215, 4241, 4448, 4658, 5825, 5932, 5952, 6155, 6750, 7275, 10305, 10323, 10962, 11279, 13495, 14104
OFFSET
1,1
LINKS
Chai Wah Wu, Table of n, a(n) for n = 1..552 (terms 1..85 from Hugo Pfoertner)
MATHEMATICA
Select[Range@3000, Median@Select[Range[#^2, (#+1)^2], PrimeQ]==#(#+1)&] (* Giorgos Kalogeropoulos, Dec 05 2021 *)
PROG
(PARI) a349791(n) = {my(p1=nextprime(n^2), p2=precprime((n+1)^2), np1=primepi(p1), np2=primepi(p2), nm=(np1+np2)/2); if(denominator(nm)==1, prime(nm), (prime(nm-1/2)+prime(nm+1/2))/2)};
for(k=2, 5000, my(t=k*(k+1)); if(t==a349791(k), print1(k, ", ")))
(Python)
from sympy import primerange
from statistics import median
def ok(n): return n>1 and int(median(primerange(n**2, (n+1)**2)))==n*(n+1)
print([k for k in range(999) if ok(k)]) # Michael S. Branicky, Dec 05 2021
(Python)
from itertools import count, islice
from sympy import primepi, prime, nextprime
def A349792gen(): # generator of terms
p1 = 0
for n in count(1):
p2 = primepi((n+1)**2)
b = p1 + p2 + 1
if b % 2:
p = prime(b//2)
q = nextprime(p)
if p+q == 2*n*(n+1):
yield n
p1 = p2
A349792_list = list(islice(A349792gen(), 12)) # Chai Wah Wu, Dec 08 2021
CROSSREFS
KEYWORD
nonn
AUTHOR
Hugo Pfoertner, Dec 05 2021
STATUS
approved