login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A073673
Rearrangement of natural numbers such that every partial product + 1 is a prime.
4
1, 2, 3, 5, 6, 9, 4, 7, 10, 17, 12, 11, 13, 8, 19, 27, 21, 26, 20, 16, 14, 28, 22, 18, 47, 30, 31, 23, 34, 37, 41, 45, 49, 33, 36, 58, 24, 62, 39, 56, 42, 93, 54, 25, 51, 53, 15, 70, 72, 73, 46, 50, 64, 97, 55, 57, 171, 96, 79, 81, 66, 71, 132, 89, 121, 29, 61, 60, 177, 32
OFFSET
1,2
COMMENTS
From Robert G. Wilson v, Dec 24 2012: (Start)
Records: 1, 2, 3, 5, 6, 9, 10, 17, 19, 27, 28, 47, 49, 58, 62, 93, 97, 171, 177, 184, 221, 243, 470, 512, 573, 768, 856, 999, 1028, 1226, 1659, 2522, ...
Late Records: 1, 2, 3, 4, 7, 8, 14, 15, 29, 32, 35, 59, 75, ... (End)
LINKS
Michael S. Branicky, Table of n, a(n) for n = 1..1600 (terms 751..954 from Bill McEachen, 1..750 from Robert G. Wilson v)
FORMULA
Conjecture: n/log(n) << a(n) << n*log(n). - Thomas Ordowski, Aug 09 2017
MATHEMATICA
f[s_List] := Block[{k = 1, p = Times @@ s}, While[ MemberQ[s, k] || !PrimeQ[k*p + 1], k++]; Append[s, k]]; Nest[f, {1}, 69] (* Robert G. Wilson v, Dec 24 2012 *)
PROG
(PARI) v=[1]; n=1; while(n<100, s=1+n*prod(i=1, #v, v[i]); if(isprime(s)&&!vecsearch(vecsort(v), n), v=concat(v, n); n=0); n++); v \\ Derek Orr, Jun 16 2015
(Python)
from gmpy2 import is_prime
from itertools import islice
def agen(startp=1, startset=set()): # generator of terms
aset, p, mink = startset, startp, 1
while True:
an = mink
while an in aset or not is_prime(p*an + 1): an += 1
yield an; aset.add(an); p *= an
while mink in aset: aset.discard(mink); mink += 1
print(list(islice(agen(), 70))) # Michael S. Branicky, May 19 2023
CROSSREFS
Sequence in context: A349792 A218013 A287876 * A179217 A118809 A121048
KEYWORD
nonn
AUTHOR
Amarnath Murthy, Aug 11 2002
EXTENSIONS
More terms from Sascha Kurz, Feb 01 2003
STATUS
approved