Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #26 Apr 15 2022 10:32:34
%S 0,1,1,1,5,36,234,1597,12459,111451,1116277,12298958,147655760,
%T 1919465237,26870436345,403044639709,6448695657957,109628096021612,
%U 1973308547820586,37492874766408001,749857477972731979,15747006284752049759,346434131946498886045
%N Number of permutations of [n] having exactly one increasing cycle.
%C Cycle (b(1), b(2), ...) is said to be increasing if, when written with its smallest element in the first position, it satisfies b(1) < b(2) < ... .
%C Exponential convolution of A000587 with A002627.
%H Alois P. Heinz, <a href="/A349788/b349788.txt">Table of n, a(n) for n = 0..450</a>
%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Permutation">Permutation</a>
%F E.g.f.: exp(1-exp(x))*(exp(x)-1)/(1-x).
%F a(n) = A186758(n) - A186755(n).
%F a(n) = Sum_{j=0..n} binomial(n,j)*A000587(j)*A002627(n-j).
%F a(n) mod 2 = A131719(n).
%F a(n) ~ (exp(1) - 1) * exp(1 - exp(1)) * n!. - _Vaclav Kotesovec_, Dec 05 2021
%e a(4) = 5: (1)(243), (143)(2), (142)(3), (132)(4), (1234).
%p b:= proc(n) option remember; series(`if`(n=0, 1, add((x+
%p (j-1)!-1)*binomial(n-1, j-1)*b(n-j), j=1..n)), x, 2)
%p end:
%p a:= n-> coeff(b(n), x, 1):
%p seq(a(n), n=0..23);
%t b[n_] := b[n] = Series[If[n == 0, 1, Sum[(x+
%t (j-1)!-1)*Binomial[n-1, j-1]*b[n-j], {j, 1, n}]], {x, 0, 2}];
%t a[n_] := Coefficient[b[n], x, 1];
%t Table[a[n], {n, 0, 23}] (* _Jean-François Alcover_, Apr 15 2022, after _Alois P. Heinz_ *)
%Y Column k=1 of A186754.
%Y Cf. A000587, A002627, A131719, A186755, A186758.
%K nonn
%O 0,5
%A _Alois P. Heinz_, Nov 30 2021