

A143844


Triangle T(n,k) = k^2 read by rows.


0



0, 0, 1, 0, 1, 4, 0, 1, 4, 9, 0, 1, 4, 9, 16, 0, 1, 4, 9, 16, 25, 0, 1, 4, 9, 16, 25, 36, 0, 1, 4, 9, 16, 25, 36, 49, 0, 1, 4, 9, 16, 25, 36, 49, 64, 0, 1, 4, 9, 16, 25, 36, 49, 64, 81, 0, 1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 0, 1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121
(list;
table;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,6


COMMENTS

This is triangle A133819 with an additional leading column of zeros.
Comment from Paul Curtz, Jun 10 2011: (Start)
There is a family of even integervalued polynomials p_n(x) = product_{k=0..n} (x^2  T(n,k))/ A002674(n+1). We find p_0(x) in A000290, p_1(x) in A002415, p_2(x) essentially in A040977, p_3(x) in A053347 and p_4(x) in A054334. (End)


LINKS

Table of n, a(n) for n=0..77.


FORMULA

T(n,k) = (A002262(n,k))^2.


MATHEMATICA

Table[Range[0, n]^2, {n, 0, 15}]//Flatten (* Harvey P. Dale, Sep 08 2017 *)


PROG

(PARI) for(n=0, 9, for(k=0, n, print1(k^2", "))) \\ Charles R Greathouse IV, Jun 10 2011


CROSSREFS

Sequence in context: A299528 A300146 A100045 * A186759 A065623 A178103
Adjacent sequences: A143841 A143842 A143843 * A143845 A143846 A143847


KEYWORD

nonn,tabl,easy


AUTHOR

Paul Curtz, Sep 03 2008


EXTENSIONS

Definition simplified by R. J. Mathar, Sep 07 2009


STATUS

approved



