login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A300146
T(n,k)=Number of nXk 0..1 arrays with every element equal to 1, 3, 4, 5, 6, 7 or 8 king-move adjacent elements, with upper left element zero.
7
0, 1, 1, 0, 4, 0, 1, 4, 4, 1, 0, 16, 1, 16, 0, 1, 48, 18, 18, 48, 1, 0, 88, 41, 246, 41, 88, 0, 1, 240, 130, 1043, 1043, 130, 240, 1, 0, 704, 510, 5368, 13182, 5368, 510, 704, 0, 1, 1600, 1740, 37739, 78147, 78147, 37739, 1740, 1600, 1, 0, 4032, 5554, 219689, 913701
OFFSET
1,5
COMMENTS
Table starts
.0....1....0.......1........0..........1............0..............1
.1....4....4......16.......48.........88..........240............704
.0....4....1......18.......41........130..........510...........1740
.1...16...18.....246.....1043.......5368........37739.........219689
.0...48...41....1043....13182......78147.......913701.......11122233
.1...88..130....5368....78147....1048462.....21602016......399714825
.0..240..510...37739...913701...21602016....783899343....25183985328
.1..704.1740..219689.11122233..399714825..25183985328..1507189100633
.0.1600.5554.1245482.99027295.6588098950.731705422933.74614900420199
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = a(n-2)
k=2: a(n) = 2*a(n-1) +8*a(n-3) -8*a(n-4) -8*a(n-5)
k=3: [order 15] for n>17
k=4: [order 40] for n>42
EXAMPLE
Some solutions for n=5 k=4
..0..0..0..0. .0..0..1..1. .0..0..0..0. .0..0..0..1. .0..1..1..1
..0..0..1..1. .0..0..1..1. .0..0..1..1. .0..0..0..1. .1..0..1..1
..0..0..1..1. .1..1..1..1. .1..1..1..1. .1..1..1..1. .0..0..0..0
..0..0..0..0. .1..1..1..1. .0..0..0..0. .1..1..1..1. .0..1..0..0
..0..0..0..0. .1..1..0..0. .0..0..1..1. .1..1..0..0. .1..0..0..0
CROSSREFS
Column 2 is A298448.
Sequence in context: A298834 A299588 A299528 * A100045 A143844 A186759
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Feb 26 2018
STATUS
approved