login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A299588
T(n,k)=Number of nXk 0..1 arrays with every element equal to 1, 3, 4, 5, 7 or 8 king-move adjacent elements, with upper left element zero.
7
0, 1, 1, 0, 4, 0, 1, 4, 4, 1, 0, 16, 1, 16, 0, 1, 48, 8, 8, 48, 1, 0, 88, 12, 84, 12, 88, 0, 1, 240, 31, 229, 229, 31, 240, 1, 0, 704, 117, 720, 2170, 720, 117, 704, 0, 1, 1600, 263, 4326, 6418, 6418, 4326, 263, 1600, 1, 0, 4032, 689, 15638, 58139, 38420, 58139, 15638, 689
OFFSET
1,5
COMMENTS
Table starts
.0....1...0.....1.......0........1..........0............1.............0
.1....4...4....16......48.......88........240..........704..........1600
.0....4...1.....8......12.......31........117..........263...........689
.1...16...8....84.....229......720.......4326........15638.........62867
.0...48..12...229....2170.....6418......58139.......462269.......2322276
.1...88..31...720....6418....38420.....551191......5070055......45637326
.0..240.117..4326...58139...551191...12345692....187346100....2776620332
.1..704.263.15638..462269..5070055..187346100...5383097328..108788947080
.0.1600.689.62867.2322276.45637326.2776620332.108788947080.3979108348246
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = a(n-2)
k=2: a(n) = 2*a(n-1) +8*a(n-3) -8*a(n-4) -8*a(n-5)
k=3: [order 19] for n>20
k=4: [order 64] for n>65
EXAMPLE
Some solutions for n=5 k=4
..0..0..0..0. .0..0..0..0. .0..0..1..1. .0..0..0..0. .0..1..1..1
..0..0..0..0. .0..0..0..0. .1..1..1..1. .0..0..0..0. .1..0..1..1
..0..0..0..0. .0..0..0..0. .0..0..0..0. .0..0..0..0. .1..1..1..1
..1..1..1..1. .0..0..0..0. .0..0..0..0. .1..1..1..1. .1..1..1..1
..0..0..1..1. .0..0..0..0. .0..0..0..0. .1..1..1..1. .1..1..1..1
CROSSREFS
Column 2 is A298448.
Sequence in context: A298622 A298454 A298834 * A299528 A300146 A100045
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Feb 13 2018
STATUS
approved