login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A100045 Decimal expansion of 17/24 + log(2). 1
1, 4, 0, 1, 4, 8, 0, 5, 1, 3, 8, 9, 3, 2, 7, 8, 6, 4, 2, 7, 5, 0, 5, 6, 5, 4, 5, 4, 7, 9, 1, 5, 0, 9, 9, 0, 1, 4, 0, 8, 8, 3, 3, 4, 6, 7, 6, 9, 3, 5, 8, 8, 5, 8, 7, 4, 5, 4, 0, 1, 3, 3, 4, 2, 8, 2, 6, 7, 2, 6, 9, 5, 5, 3, 0, 3, 0, 2, 8, 0, 4, 8, 9, 3, 9, 1, 9, 6, 6, 6, 0, 3, 2, 9, 7, 5, 2, 0, 2, 0, 8, 7 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Allouche gives an equality with this constant and an infinite sum involving the sum of the binary digits of numbers. - Charles R Greathouse IV, Sep 08 2012

LINKS

Table of n, a(n) for n=1..102.

Jean-Paul Allouche, Series and infinite products related to binary expansions of integers.

Jean-Paul Allouche and Jeffrey Shallit, Sums of digits and the Hurwitz zeta function, in: K. Nagasaka and E. Fouvry (eds.), Analytic Number Theory, Lecture Notes in Mathematics, Vol. 1434, Springer, Berlin, Heidelberg, 1990, pp. 19-30.

Eric Weisstein's World of Mathematics, Digit Sum.

Index entries for transcendental numbers

FORMULA

Equals Sum_{k>=2} A000120(k)^2 * (8*k^3 + 4*k^2 + k - 1)/(4*k*(k^2-1)*(4*k^2-1)) (Allouche and Shallit, 1990). - Amiram Eldar, Jun 01 2021

EXAMPLE

1.4014805138932786427505654547915099...

MATHEMATICA

RealDigits[17/24+Log[2], 10, 120][[1]] (* Harvey P. Dale, Jan 21 2013 *)

PROG

(PARI) log(2)+17/24 \\ Charles R Greathouse IV, May 15 2019

CROSSREFS

Cf. A000120, A002162.

Sequence in context: A299588 A299528 A300146 * A143844 A186759 A065623

Adjacent sequences:  A100042 A100043 A100044 * A100046 A100047 A100048

KEYWORD

nonn,cons,easy

AUTHOR

Eric W. Weisstein, Oct 31 2004

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 22 02:46 EST 2022. Contains 350481 sequences. (Running on oeis4.)