login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A078509
Number of permutations p of {1,2,...,n} such that p(i)-i != 1 and p(i)-i != 2 for all i.
2
1, 1, 1, 1, 5, 23, 131, 883, 6859, 60301, 591605, 6405317, 75843233, 974763571, 13512607303, 200949508327, 3190881283415, 53880906258521, 964039575154409, 18217997734199113, 362584510633666621, 7580578211464070863, 166099466140519353035, 3806162403831340850651
OFFSET
0,5
LINKS
FORMULA
From Vladeta Jovovic, Jul 16 2007: (Start)
G.f.: x/(1+x)*Sum_{n>=0} (n+1)!*(x/(1+x)^2)^n.
a(n) = Sum_{k=1..n} (-1)^(n-k)*k!*binomial(n+k-2,2*k-2). (End)
a(n) ~ exp(-2) * n!. - Vaclav Kotesovec, Aug 25 2014
MAPLE
a:= proc(n) option remember; `if`(n<4, 1,
(n-1)*a(n-1) +(n-3)*a(n-2) +a(n-3))
end:
seq(a(n), n=0..30); # Alois P. Heinz, Jan 10 2014
MATHEMATICA
a = DifferenceRoot[Function[{y, n}, {-y[n] - n y[n+1] - (n+2) y[n+2] + y[n+3] == 0, y[0] == 1, y[1] == 1, y[2] == 1, y[3] == 1}]];
Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Dec 20 2020, after Alois P. Heinz *)
CROSSREFS
KEYWORD
nonn
AUTHOR
EXTENSIONS
More terms from Alois P. Heinz, Jan 10 2014
STATUS
approved