The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A078508 Number of primes between sqrt(n^3) and sqrt((n+1)^3). 0
 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 2, 1, 2, 1, 1, 0, 2, 2, 1, 0, 2, 2, 0, 2, 2, 1, 2, 0, 3, 1, 1, 1, 3, 2, 1, 1, 3, 1, 1, 1, 1, 2, 1, 1, 2, 1, 2, 2, 1, 2, 1, 1, 3, 2, 3, 1, 2, 2, 2, 2, 0, 2, 1, 3, 1, 2, 3, 3, 1, 3, 3, 1, 2, 2, 1, 2, 2, 2, 2, 1, 1, 1, 2, 2, 0, 3, 2, 2, 1, 1, 2, 3, 1, 3, 2, 2, 2, 3, 2, 3 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,16 COMMENTS The following are the only values of n such that the interval contains no primes: 0 1 4 10 20 24 27 32 65 89 121 139 141 187 207 306 321 348 1006 1051 Conjecture 1: for n>1051, a prime always exists between n^1.5 and (n+1)^1.5. Conjecture 2: for n>7295, more than 2 primes always exist between n^1.5 and (n+1)^1.5. LINKS EXAMPLE n = 2 [n^3/2] = 2 [(n+1)^3/2] = 5 there is 1 prime between 2 and 5 = 3. MATHEMATICA Table[Count[Range[Floor[Surd[n^3, 2]]+1, Floor[Surd[(n+1)^3, 2]-1]], _?PrimeQ], {n, 0, 110}] (* Harvey P. Dale, Jan 30 2014 *) PROG (PARI) sqcubespr(n) = { for(x=0, n, ct=0; for(y=floor(sqrt(x^3))+1, floor(sqrt((x+1)^3)-1), if(isprime(y), ct++; ); ); if(ct>=0, print1(ct" "); ) ) } CROSSREFS Sequence in context: A117168 A287160 A029443 * A029416 A252374 A344569 Adjacent sequences:  A078505 A078506 A078507 * A078509 A078510 A078511 KEYWORD easy,nonn AUTHOR Cino Hilliard, Jan 05 2003 EXTENSIONS Comments edited by Harvey P. Dale, Jan 30 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 5 15:11 EDT 2021. Contains 346471 sequences. (Running on oeis4.)