login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A078508
Number of primes between sqrt(n^3) and sqrt((n+1)^3).
0
0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 2, 1, 2, 1, 1, 0, 2, 2, 1, 0, 2, 2, 0, 2, 2, 1, 2, 0, 3, 1, 1, 1, 3, 2, 1, 1, 3, 1, 1, 1, 1, 2, 1, 1, 2, 1, 2, 2, 1, 2, 1, 1, 3, 2, 3, 1, 2, 2, 2, 2, 0, 2, 1, 3, 1, 2, 3, 3, 1, 3, 3, 1, 2, 2, 1, 2, 2, 2, 2, 1, 1, 1, 2, 2, 0, 3, 2, 2, 1, 1, 2, 3, 1, 3, 2, 2, 2, 3, 2, 3
OFFSET
0,16
COMMENTS
The following are the only values of n such that the interval contains no primes: 0 1 4 10 20 24 27 32 65 89 121 139 141 187 207 306 321 348 1006 1051 Conjecture 1: for n>1051, a prime always exists between n^1.5 and (n+1)^1.5. Conjecture 2: for n>7295, more than 2 primes always exist between n^1.5 and (n+1)^1.5.
EXAMPLE
n = 2 [n^3/2] = 2 [(n+1)^3/2] = 5 there is 1 prime between 2 and 5 = 3.
MATHEMATICA
Table[Count[Range[Floor[Surd[n^3, 2]]+1, Floor[Surd[(n+1)^3, 2]-1]], _?PrimeQ], {n, 0, 110}] (* Harvey P. Dale, Jan 30 2014 *)
PROG
(PARI) sqcubespr(n) = { for(x=0, n, ct=0; for(y=floor(sqrt(x^3))+1, floor(sqrt((x+1)^3)-1), if(isprime(y), ct++; ); ); if(ct>=0, print1(ct" "); ) ) }
CROSSREFS
Sequence in context: A355343 A287160 A029443 * A029416 A252374 A344569
KEYWORD
easy,nonn
AUTHOR
Cino Hilliard, Jan 05 2003
EXTENSIONS
Comments edited by Harvey P. Dale, Jan 30 2014
STATUS
approved