login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of primes between sqrt(n^3) and sqrt((n+1)^3).
0

%I #8 Jan 30 2014 11:10:18

%S 0,0,1,1,0,1,1,1,1,1,0,1,1,1,1,2,1,2,1,1,0,2,2,1,0,2,2,0,2,2,1,2,0,3,

%T 1,1,1,3,2,1,1,3,1,1,1,1,2,1,1,2,1,2,2,1,2,1,1,3,2,3,1,2,2,2,2,0,2,1,

%U 3,1,2,3,3,1,3,3,1,2,2,1,2,2,2,2,1,1,1,2,2,0,3,2,2,1,1,2,3,1,3,2,2,2,3,2,3

%N Number of primes between sqrt(n^3) and sqrt((n+1)^3).

%C The following are the only values of n such that the interval contains no primes: 0 1 4 10 20 24 27 32 65 89 121 139 141 187 207 306 321 348 1006 1051 Conjecture 1: for n>1051, a prime always exists between n^1.5 and (n+1)^1.5. Conjecture 2: for n>7295, more than 2 primes always exist between n^1.5 and (n+1)^1.5.

%e n = 2 [n^3/2] = 2 [(n+1)^3/2] = 5 there is 1 prime between 2 and 5 = 3.

%t Table[Count[Range[Floor[Surd[n^3,2]]+1,Floor[Surd[(n+1)^3,2]-1]], _?PrimeQ],{n,0,110}] (* _Harvey P. Dale_, Jan 30 2014 *)

%o (PARI) sqcubespr(n) = { for(x=0,n, ct=0; for(y=floor(sqrt(x^3))+1,floor(sqrt((x+1)^3)-1), if(isprime(y), ct++; ); ); if(ct>=0,print1(ct" ");) ) }

%K easy,nonn

%O 0,16

%A _Cino Hilliard_, Jan 05 2003

%E Comments edited by _Harvey P. Dale_, Jan 30 2014