login
A252374
a(n) = exponent k for the smallest r such that r^k <= spf(n) and gpf(n) < r^(k+1), for some k >= 0, where spf and gpf (smallest and greatest prime factor of n) are given by A020639(n) and A006530(n).
3
0, 1, 1, 1, 2, 1, 2, 1, 1, 0, 3, 1, 3, 0, 1, 1, 4, 1, 4, 0, 1, 0, 4, 1, 2, 0, 1, 0, 4, 0, 4, 1, 0, 0, 2, 1, 5, 0, 0, 0, 5, 0, 5, 0, 1, 0, 5, 1, 2, 0, 0, 0, 5, 1, 1, 0, 0, 0, 5, 0, 5, 0, 1, 1, 1, 0, 6, 0, 0, 0, 6, 1, 6, 0, 1, 0, 1, 0, 6, 0, 1, 0, 6, 0, 1, 0, 0, 0, 6, 0, 1, 0, 0, 0, 1, 1, 6, 0, 0, 0, 6, 0, 6, 0, 1, 0, 6, 1, 6, 0, 0, 0, 6, 0, 1, 0, 0, 0, 1, 0
OFFSET
1,5
LINKS
FORMULA
Other identities. For all n >= 1:
a(n) = a(A066048(n)). [The result depends only on the smallest and the largest prime factor of n.]
PROG
(Scheme) (define (A252374 n) (let ((spf (A020639 n)) (gpf (A006530 n))) (let outerloop ((r 2)) (let innerloop ((rx 1) (k 0)) (cond ((and (<= rx spf) (< gpf (* r rx))) k) ((<= rx spf) (innerloop (* r rx) (+ 1 k))) (else (outerloop (+ 1 r))))))))
CROSSREFS
Cf. A252375.
Cf. A251727 (gives the position of other zeros after a(1)=0).
Cf. also A006530, A020639, A066048.
Sequence in context: A029443 A078508 A029416 * A344569 A341094 A346831
KEYWORD
nonn
AUTHOR
Antti Karttunen, Dec 17 2014
STATUS
approved