login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A078506
Decimal expansion of sum of inverses of unrestricted partition function.
7
2, 5, 1, 0, 5, 9, 7, 4, 8, 3, 8, 8, 6, 2, 9, 3, 9, 5, 3, 2, 3, 6, 8, 3, 4, 7, 2, 7, 4, 1, 5, 4, 6, 5, 4, 5, 1, 6, 8, 3, 5, 3, 1, 9, 4, 4, 9, 5, 5, 1, 4, 7, 6, 8, 1, 9, 0, 8, 0, 6, 2, 9, 9, 6, 5, 0, 8, 3, 8, 4, 5, 3, 2, 9, 0, 4, 4, 6, 1, 8, 4, 2, 3, 8, 1, 9, 2, 5, 8, 7, 1, 4, 6, 2, 8, 2, 7, 8, 0, 9
OFFSET
1,1
COMMENTS
One could just as well sum from n >= 0, giving a value one higher. - Franklin T. Adams-Watters, Nov 30 2018
Conjecture: this is a transcendental number. - Zhi-Wei Sun, May 24 2023
LINKS
FORMULA
Sum_{n>=1} 1/A000041(n) = 2.510597483886...
EXAMPLE
2.510597483886293953236834727415465451683531944955147681908...
MATHEMATICA
digits = 100; NSum[1/PartitionsP[n], {n, 1, Infinity}, NSumTerms -> 10000, WorkingPrecision -> digits+1] // RealDigits[#, 10, digits]& // First (* Jean-François Alcover, Feb 21 2014 *)
PROG
(PARI)
default(realprecision, 100);
N=10000; x='x+O('x^N);
v=Vec(Ser( 1/eta(x) ) );
s=sum(n=2, #v, 1.0/v[n] )
(PARI) {a(n) = if( n<-1, 0, n++; default( realprecision, n+5); floor( suminf( k=1, 1 / numbpart(k)) * 10^n) % 10)} /* Michael Somos, Feb 05 2011 */
CROSSREFS
KEYWORD
cons,nonn
AUTHOR
Ralf Stephan, Jan 05 2003
EXTENSIONS
Corrected digits from position 32 on by Ralf Stephan, Jan 24 2011
More terms from Jean-François Alcover, Feb 21 2014
STATUS
approved