login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A134574
Array, a(n,k) = total size of all n-length words on a k-letter alphabet, read by antidiagonals.
0
1, 2, 2, 3, 8, 3, 4, 24, 18, 4, 5, 64, 81, 32, 5, 6, 160, 324, 192, 50, 6, 7, 384, 1215, 1024, 375, 72, 7, 8, 896, 4374, 5120, 2500, 648, 98, 8, 9, 2048, 15309, 24576, 15625, 5184, 1029, 128, 9, 10, 4608, 52488, 114688, 93750, 38880, 9604, 1536, 162, 10
OFFSET
1,2
FORMULA
a(n,k) = n*k^n.
O.g.f. (by columns): (k*x)/(-1+k*x)^2.
E.g.f. (by columns): k*x*exp(k*x).
a(n,k) = Sum[k^n,{j,1,n}] = n*Sum[C(n,m)*(k-1)^m,{m,0,n}]. - Ross La Haye, Jan 26 2008
EXAMPLE
a(2,2) = 8 because there are 2^2 = 4 2-length words on a 2 letter alphabet, each of size 2 and 2*4 = 8.
Array begins:
==================================================================
n\k| 1 2 3 4 5 6 7 ...
---|--------------------------------------------------------------
1 | 1 2 3 4 5 6 7 ...
2 | 2 8 18 32 50 72 98 ...
3 | 3 24 81 192 375 648 1029 ...
4 | 4 64 324 1024 2500 5184 9604 ...
5 | 5 160 1215 5120 15625 38880 84035 ...
6 | 6 384 4374 24576 93750 279936 705894 ...
7 | 7 896 15309 114688 546875 1959552 5764801 ...
8 | 8 2048 52488 524288 3125000 13436928 46118408 ...
9 | 9 4608 177147 2359296 17578125 90699264 363182463 ...
... - Franck Maminirina Ramaharo, Aug 07 2018
MATHEMATICA
t[n_, k_] := Sum[k^n, {j, n}]; Table[ t[n - k + 1, k], {n, 10}, {k, n}] // Flatten (* Robert G. Wilson v, Aug 07 2018 *)
CROSSREFS
Cf. a(n, 1) = a(1, k) = A000027(n); a(n, 2) = A036289(n); a(n, 3) = A036290(n); a(n, 4) = A018215(n); a(n, 5) = A036291(n); a(n, 6) = A036292(n); a(n, 7) = A036293(n); a(n, 8) = A036294(n); a(2, k) = A001105(k); a(3, k) = A117642(k); a(n, n) = A007778(n); a(n, n+1) = A066274(n+1): sum[a(i-1, n-i+1), {i, 1, n}] = A062807(n).
Sequence in context: A186753 A135835 A177696 * A141617 A267644 A204197
KEYWORD
nonn,tabl
AUTHOR
Ross La Haye, Jan 22 2008
STATUS
approved