login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A177698
Expansion of e.g.f.: sin(arctan(x)).
1
0, 1, 0, -3, 0, 45, 0, -1575, 0, 99225, 0, -9823275, 0, 1404728325, 0, -273922023375, 0, 69850115960625, 0, -22561587455281875, 0, 9002073394657468125, 0, -4348001449619557104375, 0, 2500100833531245335015625, 0, -1687568062633590601135546875
OFFSET
0,4
COMMENTS
Except periodic zeros for n even, and negative signs for n == 3 (mod 4), we find the same sequence as A079484 (determinant of M(2n-1) where M(k) is the k X k matrix with m(i,j)=j if i+j=k, m(i,j)=i otherwise).
REFERENCES
L. Comtet and M. Fiolet, Sur les dérivées successives d'une fonction implicite. C. R. Acad. Sci. Paris Ser. A 278 (1974), 249-251.
LINKS
FORMULA
E.g.f.: sin(arctan(x)) = x/sqrt(1+x^2).
E.g.f.: x/(G(0)+x) where G(k)= 1 - 2*x/(1 + 1/G(k+1) ); (recursively defined continued fraction). - Sergei N. Gladkovskii, Dec 08 2012
a(n) ~ 2*sin(Pi*n/2)*n^n/exp(n). - Vaclav Kotesovec, Sep 25 2013
From Benedict W. J. Irwin, Nov 03 2016: (Start)
a(n) = y(n,n), n>0, where y(m+1,n) = (n-2*m)*y(m,n), with y(0,n)=1, for all n.
a(n) = Real part of -i*(2*i)^n*Gamma(1 + n/2)*Gamma(n/2)/Pi. (End)
From Michael Somos, May 04 2017: (Start)
a(n) = -n * (n-2) * a(n-2) for all n in Z.
a(n) = 1 / a(-n) for all odd n in Z.
a(n) = n! * binomial(n-1,(n-1)/2) * 2^(1-n) * (-1)^((n-1)/2) if n is odd > 0.
a(2*n + 1) = (-1)^n * A079484(n). (End)
EXAMPLE
G.f. = x - 3*x^3 + 45*x^5 - 1575*x^7 + 99225*x^9 - 9823275*x^11 + ...
d^3y/dx^3 = 18/(1+x^2)^(5/2)*x^2 -3/(1+x^2)^(3/2) -15*x^4/(1+x^2)^(7/2).
For x = 0, we obtain a(3) = 0 - 3 + 0 = -3.
MAPLE
a:= n-> n! * coeff(series(sin(arctan(x)), x, n+1), x, n):
seq(a(n), n=0..30);
MATHEMATICA
Table[n!*SeriesCoefficient[x/Sqrt[1+x^2], {x, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Sep 25 2013 *)
With[{nn=30}, CoefficientList[Series[Sin[ArcTan[x]], {x, 0, nn}], x] Range[ 0, nn-1]!] (* Harvey P. Dale, Nov 30 2015 *)
Join[{0}, Table[DifferenceRoot[Function[{y, m}, {y[1 + m] == (n - 2 m)*y[m], y[0] == 1}]][n], {n, 1, 20}]] (* Benedict W. J. Irwin, Nov 03 2016 *)
Join[{0}, Table[Re[-((I (2 I)^n Gamma[1 + n/2] Gamma[n/2])/Pi)], {n, 1, 20}]] (* Benedict W. J. Irwin, Nov 03 2016 *)
a[ n_] := If[ EvenQ[n], 0, I^(n - 1) n!! (n - 2)!!]; (* Michael Somos, May 04 2017 *)
PROG
(PARI) {a(n) = if( n%2==0, 0, n<0, 1 / self()(-n), n! * binomial(n-1, n\2) * 2^(1-n) * (-1)^(n\2))}; /* Michael Somos, May 04 2017 */
(PARI) x='x+O('x^50); concat([0], Vec(x/sqrt(1+x^2))) \\ G. C. Greubel, Sep 25 2018
(Magma) m:=50; R<x>:=PowerSeriesRing(Rationals(), m); [0] cat Coefficients(R!(x/Sqrt(1+x^2))); // G. C. Greubel, Sep 25 2018
CROSSREFS
Cf. A079484.
Sequence in context: A172396 A164806 A105751 * A377240 A009786 A012738
KEYWORD
sign
AUTHOR
Michel Lagneau, May 11 2010
STATUS
approved