|
|
A177700
|
|
The n-th derivative of log(1+x)*tanh(x) evaluated at x = 0.
|
|
2
|
|
|
0, 0, 2, -3, 0, -10, 160, -756, 2688, -27504, 341248, -3113440, 29004800, -365574144, 5120567296, -69912541440, 1009388355584, -16301637449728, 281310403362816, -5030932957138944, 94747161802047488, -1897026741117419520
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
LINKS
|
L. Comtet and M. Fiolet, Sur les derivees successives d'une fonction implicite. C. R. Acad. Sci. Paris Ser. A 278 (1974), 249-251. MR0348055
|
|
EXAMPLE
|
The second derivative is -(tanh(x)/(x+1)^2) + 2*((1 - tanh(x)^2)/(x+1)) - 2*log(x+1)tanh(x)(1 - tanh(x)^2). At x = 0 this sets a(2) = 0 + 2 - 0 = 2.
|
|
MAPLE
|
n0:= 35: T:=array(1..n0): f:=x-> ln(1+x)*tanh(x):
for n from 1 to n0 do: T[n]:=D(f)(0):f:=D(f):od: print(T):
|
|
CROSSREFS
|
|
|
KEYWORD
|
sign
|
|
AUTHOR
|
|
|
EXTENSIONS
|
a(0) inserted and keyword:sign added by R. J. Mathar, May 14 2010
|
|
STATUS
|
approved
|
|
|
|