login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A131289
Period 12: repeat 1, 1, 3, -3, -3, 1, -1, -1, -3, 3, 3, -1.
0
1, 1, 3, -3, -3, 1, -1, -1, -3, 3, 3, -1, 1, 1, 3, -3, -3, 1, -1, -1, -3, 3, 3, -1, 1, 1, 3, -3, -3, 1, -1, -1, -3, 3, 3, -1, 1, 1, 3, -3, -3, 1, -1, -1, -3, 3, 3, -1, 1, 1, 3, -3, -3, 1, -1, -1, -3, 3, 3, -1, 1, 1, 3, -3, -3, 1, -1, -1, -3, 3, 3, -1, 1, 1, 3, -3, -3, 1, -1, -1, -3, 3, 3, -1, 1, 1, 3, -3, -3, 1, -1, -1, -3, 3, 3, -1, 1, 1, 3, -3, -3, 1
OFFSET
0,3
COMMENTS
Nonsimple continued fraction of (41+sqrt(17))/26 = 1.7355040625237... - R. J. Mathar, Mar 08 2012
FORMULA
a(n) = 4*cos(Pi*n/6)/3 - 2*sin(Pi*n/6)/3 - 5*cos(Pi*n/2)/3 + 5*sin(Pi*n/2)/3 + 4*cos(5*Pi*n/6)/3 - 2*sin(5*Pi*n/6)/3.- R. J. Mathar, Oct 08 2011
a(0) = 1, a(1) = 1, a(2) = 3, a(3) = -3, a(4) = -3, a(5) = 1, a(n) = -a(n-6). - Harvey P. Dale, Sep 03 2012
MATHEMATICA
PadRight[{}, 120, {1, 1, 3, -3, -3, 1, -1, -1, -3, 3, 3, -1}] (* or *) LinearRecurrence[ {0, 0, 0, 0, 0, -1}, {1, 1, 3, -3, -3, 1}, 120] (* Harvey P. Dale, Sep 03 2012 *)
PROG
(PARI) a(n) = [1, 1, 3, -3, -3, 1, -1, -1, -3, 3, 3, -1][n%12+1]; \\ Jinyuan Wang, Feb 26 2020
CROSSREFS
Cf. A130974 ([1, 1, 1, 3, 3, 3]).
Sequence in context: A177693 A353631 A353641 * A130974 A064353 A190906
KEYWORD
sign,easy
AUTHOR
Paul Curtz, Sep 29 2007
EXTENSIONS
More terms from Olaf Voß, Feb 11 2008
STATUS
approved