login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A190906
a(n) = gcd(n! / floor(n/2)!^2, 3^n).
1
1, 1, 1, 3, 3, 3, 1, 1, 1, 9, 9, 9, 3, 3, 3, 9, 9, 9, 1, 1, 1, 3, 3, 3, 1, 1, 1, 27, 27, 27, 9, 9, 9, 27, 27, 27, 3, 3, 3, 9, 9, 9, 3, 3, 3, 27, 27, 27, 9, 9, 9, 27, 27, 27, 1, 1, 1, 3, 3, 3, 1, 1, 1, 9, 9, 9, 3, 3, 3, 9, 9, 9, 1, 1, 1, 3, 3, 3, 1, 1, 1
OFFSET
0,4
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 0..10000
FORMULA
a(n) = gcd(A056040(n), 3^n).
a(n) <= n. - Charles R Greathouse IV, Jun 30 2011
From Johannes W. Meijer, Jun 30 2011: (Start)
a(3*n) = a(3*n+1) = a(3*n+2) = A010684(n)*a(n) for n > 1 with a(0) = a(1) = a(2) = 1.
a(9*n+3) = a(9*n+4) = a(9*n+5) = 3*a(n).
a(9*n) = a(9*n+1) = a(9*n+2) = a(9*n+6) = a(9*n+7) = a(9*n+8) = A010690(n)*a(n). (End)
MAPLE
A190906 := n -> igcd(n!/iquo(n, 2)!^2, 3^n): seq(A190906(n), n=0..80);
MATHEMATICA
sf[n_] := With[{f = Floor[n/2]}, Pochhammer[f+1, n-f]/f!]; a[n_] := GCD[sf[n], 3^n]; Table[a[n], {n, 0, 80}] (* Jean-François Alcover, Jul 29 2013 *)
PROG
(PARI) a(n)=gcd(n!/(n\2)!^2, 3^n) \\ Charles R Greathouse IV, Jun 30 2011
(PARI) a(n)=my(s); while(n\=3, s+=n%2); 3^s \\ Charles R Greathouse IV, Jun 30 2011
CROSSREFS
Cf. A060632.
Sequence in context: A131289 A130974 A064353 * A355586 A080311 A135368
KEYWORD
nonn,easy,look,hear
AUTHOR
Peter Luschny, Jun 30 2011
STATUS
approved