login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A120260
Diagonal sums of number triangle A120258.
1
1, 1, 2, 3, 8, 24, 92, 432, 2740, 23822, 264185, 3545166, 59474514, 1343942004, 41179884383, 1593533376361, 74665098131246, 4404743069577837, 351138858279113987, 37740395752334771775, 5093113605218543006445
OFFSET
0,3
FORMULA
a(n)=sum{k=0..floor(n/2), Product{j=0..k-1, C(2n-4k+j, n-2k)/C(n-2k+j, j)}}
Limit_{n->oo} a(n)^(1/n^2) = r^(r^2/2) * (2-3*r)^((2-3*r)^2/2) / (2^(2*(1-2*r)^2) * (1-r)^((1-r)^2) * (1-2*r)^((1-2*r)^2)) = 1.133380884076924860904704854418..., where r = 0.201760656726887011996310570327419178... is the root of the equation 2^(8-16*r) * (2-3*r)^(-6+9*r) * (1-2*r)^(4-8*r) * (1-r)^(2-2*r) * r^r = 1. - Vaclav Kotesovec, Aug 29 2023
MATHEMATICA
Table[Sum[Product[Binomial[2*n-4*k+j, n-2*k]/Binomial[n-2*k+j, j], {j, 0, k-1}], {k, 0, Floor[n/2]}], {n, 0, 20}] (* Vaclav Kotesovec, Aug 29 2023 *)
Table[Sum[BarnesG[1 + k] * BarnesG[2 - 2*k + n]^2 * BarnesG[1 - 3*k + 2*n] * Gamma[1 - 4*k + 2*n] / (BarnesG[1 - k + n]^2 * BarnesG[2 - 4*k + 2*n] * Gamma[1 - 2*k + n]^2), {k, 0, Floor[n/2]}], {n, 0, 20}] (* Vaclav Kotesovec, Aug 29 2023 *)
CROSSREFS
Sequence in context: A038561 A055981 A182212 * A202592 A002619 A286820
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Jun 13 2006
STATUS
approved