Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #7 Aug 29 2023 04:32:05
%S 1,1,2,3,8,24,92,432,2740,23822,264185,3545166,59474514,1343942004,
%T 41179884383,1593533376361,74665098131246,4404743069577837,
%U 351138858279113987,37740395752334771775,5093113605218543006445
%N Diagonal sums of number triangle A120258.
%F a(n)=sum{k=0..floor(n/2), Product{j=0..k-1, C(2n-4k+j, n-2k)/C(n-2k+j, j)}}
%F Limit_{n->oo} a(n)^(1/n^2) = r^(r^2/2) * (2-3*r)^((2-3*r)^2/2) / (2^(2*(1-2*r)^2) * (1-r)^((1-r)^2) * (1-2*r)^((1-2*r)^2)) = 1.133380884076924860904704854418..., where r = 0.201760656726887011996310570327419178... is the root of the equation 2^(8-16*r) * (2-3*r)^(-6+9*r) * (1-2*r)^(4-8*r) * (1-r)^(2-2*r) * r^r = 1. - _Vaclav Kotesovec_, Aug 29 2023
%t Table[Sum[Product[Binomial[2*n-4*k+j, n-2*k]/Binomial[n-2*k+j, j], {j,0,k-1}], {k,0,Floor[n/2]}], {n,0,20}] (* _Vaclav Kotesovec_, Aug 29 2023 *)
%t Table[Sum[BarnesG[1 + k] * BarnesG[2 - 2*k + n]^2 * BarnesG[1 - 3*k + 2*n] * Gamma[1 - 4*k + 2*n] / (BarnesG[1 - k + n]^2 * BarnesG[2 - 4*k + 2*n] * Gamma[1 - 2*k + n]^2), {k, 0, Floor[n/2]}], {n, 0, 20}] (* _Vaclav Kotesovec_, Aug 29 2023 *)
%K easy,nonn
%O 0,3
%A _Paul Barry_, Jun 13 2006