OFFSET
0,5
COMMENTS
Columns are the central coefficients of the triangles T(n, k;r) with T(n, k;r)=Product{j=0..r, C(n+j, k+j)/C(n-k+j, j)}*[k<=n]; (r=0,A007318), (r=1;A001263),(r=2,A056939),(r=3,A056940),(r=4,A056941). Essentially A103905 as a number triangle with an extra diagonal of 1's. Central coefficients T(2n, n) are A008793. Row sums are A120259. Diagonal sums are A120260.
LINKS
Seiichi Manyama, Rows n = 0..100, flattened
FORMULA
Number triangle T(n, k)=[k<=n]*Product{j=0..k-1, C(2n-2k+j, n-k)/C(n-k+j, j)}
As a square array, this is T(n,m)=product{k=1..m, product{j=1..n, product{i=1..n, (i+j+k-1)/(i+j+k-2)}}}; - Paul Barry, May 13 2008
EXAMPLE
Triangle begins:
1;
1, 1;
1, 2, 1;
1, 6, 3, 1;
1, 20, 20, 4, 1;
1, 70, 175, 50, 5, 1;
1, 252, 1764, 980, 105, 6, 1;
1, 924, 19404, 24696, 4116, 196, 7, 1;
...
PROG
(PARI) T(n, k) = prod(j=0, k-1, binomial(2*n-2*k+j, n-k)/binomial(n-k+j, j)); \\ Seiichi Manyama, Apr 02 2021
CROSSREFS
KEYWORD
AUTHOR
Paul Barry, Jun 13 2006
STATUS
approved